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Abstract

Stochastic models of electricity spot prices depend on price spikes and long-term season-
ality. Therefore it is crucial to determine suitable methods for the identification of price 
spikes and the modeling of long-term seasonal components (LTSC). Following recent 
studies (Janczura and Weron, 2010; Janczura et al., 2013), we compare the proportion of 
observations identified as outliers for five different outlier detection methods and three 
approaches to long-term seasonality modeling. After removing the effects of outliers, we 
compare the out-of-sample forecasting performance for three categories of long-term 
seasonality models: dummies, Fourier series, and wavelet-based methods. We consider 
various combinations of each approach and perform a comprehensive backtesting compari-
son at different forecasting horizons for the recently liberalized Turkish electricity market. 
Keywords: electricity price spikes, long-term seasonality modeling, Turkish electricity prices, wavelets.

Türkiye Elektrik Piyasasında Elektrik Fiyatlarındaki Uzun Dönemli 
Mevsimselliklerin ve Ani ve Ciddi Hareketlerin Modellenmesi

Özet

Spot elektrik fiyatlarının stokhastik modellenmesi fiyatlardaki ani ve ciddi yükselişlere 
(ve düşüşlere) ve uzun dönemli mevsimselliklere bağlıdır. Bu nedenle ani ve ciddi fiyat 
yükselişlerini (ve düşüşlerini) tespit edecek metotların belirlenmesi ve uzun dönemli 
mevsimselliklerin bileşenlerinin modellenmesi büyük önem arz etmektedir. Bu çalışmada, 
Janczura ve Weron (2010) ve Janczura ve diğ. (2013) makalelerindeki yöntem takip edi-
lerek beş değişik aykırı gözlem belirleme metodunun sonuçları değerlendirilmiştir. Ayrıca 
aykırı gözlemlerin etkileri giderildikten sonra, üç değişik mevsimsellik yöntemine (kukla 
değişkenler, Fourier serileri, dalgacık tabanlı yöntemler) göre örneklem dışı gözlemlerin 
performansı karşılaştırılmıştır. 2009-2013 yıllarında arasında Türkiye’deki spot elektrik 
fiyatlarını kullanan ve bu alanda ilk olan çalışmamızda, elektrik fiyatlarının doğru olarak 
modellenerek ekonomiye katkı sağlanması hedeflenmiştir.
Anahtar kelimeler: elektrik fiyatlarındaki ani ve ciddi yükseliş ve düşüşler, uzun dönemli mevsimsellik model-
lemesi, Türkiye elektrik fiyatları, dalgacık methodu.
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Electricity is a non-storable commodity with consumption dependent on tempera-
ture, weather conditions, and various economic factors that might be cyclical. 
Electricity supply is also affected by power plant outages or problems related to 

transmission grids or lines. In liberalized electricity markets, such as in the USA and in 
Europe, spot prices are determined by supply and demand. In this study we focus on the 
Turkish electricity market which was liberalized in 2009. Active trading commenced 
in December 2009.

According to TEIAS (Turkish Electricity Transmission Company), Turkey’s  
electricity generation capacity rose to 56GW at the end of 2012, up from 42GW in 
2008, and electricity generation capacity is expected to reach 66GW by 2015. Per 
capita electricity consumption in Turkey is approximately 3000kWh (see Hamzacebi 
and Es, 2014). This is less than the average consumption in OECD countries which 
is near 8000kWh. Between 2004 and 2013, the Turkish economy grew on average by 
4.9%, while electricity consumption grew at a faster rate of 5.7% (Source: Turkish 
Statistical Institute). Over the last ten years, Turkey has seen the highest increase in 
electricity consumption of all European countries, and places second in the world after 
China in this category. This shows that the Turkish economy has an important potential 
for further growth in its electricity generation capacity in order to meet the increasing 
energy demands of its expanding economy. In an effort to optimize the use of its ex-
isting electricity generation capacity, the Turkish government introduced in 2009 the 
electricity spot trading system which has lead to the determination of spot electricity 
prices one day ahead in the market.

To effectively manage existing resources, it is crucial to have reliable forecasts of 
electricity prices (Weron, 2006). The regulatory issues regarding the energy market in 
Turkey are discussed by Çetin and Oğuz (2007), Bağdadioğlu and Odyakmaz (2009), and 
Erdoğdu (2010). Although there are many studies that model and explain the electricity 
consumption and demand in Turkey (e.g. Altınay and Karagöl, 2005; Hamzacebi and 
Es, 2014; Akay and Atak, 2007; Hamzacebi, 2007; Ediger and Tatlıdil, 2002; Bölük 
and Koç, 2010), there are very few studies which model electricity spot prices after 
the establishment of the spot market in 2009. Gökgöz and Atmaca (2012) use spot  
electricity prices to determine optimal electricity generation asset allocation. To the best 
of our knowledge, the only studies that model spot prices are provided by Azize and 
Talaslı (2014), Stevenson et al. (2006), and Nowotarski et al. (2013). 

Electricity prices exhibit strong seasonality, mean reversion, and spikes (as is 
documented in Azize and Talaslı, 2014; Weron, 2008; Küçükali and Barış, 2010), and 
stochastic models with mean reversion, spikes, and seasonality are commonly utilized. 
Another approach is the use of regime switching models as in Weron (2008). Furthermore, 
stochastic models allow for the consistent pricing of derivatives instruments written on 
spot electricity prices. The studies provided by Küçükali and Barış (2010), Azize and 
Talaslı (2014), and Benth et al. (2012) consider mean reverting diffusion processes with 
seasonality and spikes. Multi-factor stochastic modeling of Turkish electricity spot prices 
can be found in Azize and Talaslı (2014).  The main methodologies used in electricity 
price forecasting have been reviewed by Aggarval et al. (2009). They also present the  
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application of various models on different electricity markets. 
The choices of method for detecting price spikes and modeling long-term seasonal 

components have strong consequences for the parameter estimates and the fit of the 
stochastic models. There are different methodologies in the literature to model the trend 
of the seasonal component of electricity spot prices. One commonly used simple method 
is the application of  piecewise constant functions (or dummies) for the months (see 
Fanone et al., 2013, Fleten et al., 2011; Haldrup et al. 2010; Higgs and Worthington, 
2008). Another method is the use of sums of sinusoidal functions of different frequencies 
(see Keleş et al., 2012; Erlwein et al., 2010; Koopman et al., 2007; Cartea and Figueroa, 
2005). Another way to model the long term seasonal component is the applicaiton of 
wavelet decomposition and smoothing techniques (see Conejo et al., 2005; Janczura and 
Weron, 2010, 2012; Schlueter, 2010; Stevenson, 2001; Stevenson et al., 2006; Weron, 
2006, 2009; Weron et al., 2004a,b).

In this study we consider a wide range of outlier detection methods and long-term 
seasonality models which have not yet been considered for Turkish spot electricity 
prices.  Based on our analysis, we then provide recommendations for the modeling of 
spot electricity prices in Turkey.[1] Our findings can also provide guidance for other en-
ergy markets that were recently liberalized or which are in the process of liberalization.

Data
Our dataset consists of 1509 observations of daily electricity spot prices in Turkey from 
December 1, 2009 to February 13, 2014. There are two ways to represent electricity 
prices for stochastic models. We can either model the spot price pt directly or the log 
price time series, i.e. ln(pt). In the first approach, we have pt = Tt + st + Xt, where Tt is 
the long-term trend component, st is the short term seasonality component, and Xt is the 
stochastic component. For the second approach, we write pt = exp(Tt + st + Xt), which is 
in multiplicative form and ensures non-negativity of spot prices. In some datasets, the 
spot price of electricity can be negative since it is usually costly for power companies 
to shut down and restart production. However, though uncommon, we have no negative 
prices in our dataset. Notwithstanding, we still prefer to use the multiplicative form 
which guarantees positive prices. The dataset of spot electricity prices, displayed in 
Figure 1, exhibits spikes and seasonality.

Detecting Price Spikes
The proper identification of spikes is a crucial part of models for electricity spot prices 
since spikes can significantly influence the deterministic and stochastic components of 
a model. In the literature, the following spike identification methods have been applied: 
(1) fixed price thresholds where all prices exceeding some suitably chosen price level are 
classified as spikes (e.g. see Boogert and Dupont, 2008); (2) Variable price thresholds 

[1]	 A large set of MATLAB functions for different outlier and long-term seasonality models are provided by R. Weron on 
the website: http://ideas.repec.org/e/pwe42.html, which we used in our study.
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where a certain percentage of the highest (and/or lowest) prices, e.g., the upper 1% of 
prices are classified as outliers (see Mayer et al., 2012); (3) Fixed price change thresholds 
where price increments or price returns exceeding some threshold are classified as outliers 
(Bierbrauer et al., 2004); (4) Variable price change thresholds, more commonly known 
as the “recursive filter” technique, where prices corresponding to the price increments 
(or returns) exceeding three standard deviations of all returns are removed one by one 
in an iterative procedure (c.f. Weron, 2006); (5) Wavelet filtering where the signal (the 
price series) is first decomposed using the wavelet transform, then reconstructed up to 
a certain level of detail (c.f. Trück et al., 2007); (6) Thresholds implied by the Gaussian 
90% prediction intervals (see Borovkova and Permana, 2006); (7) Thresholds yielding 
the best model in terms of matching kurtosis (see Geman and Roncoroni, 2006); (8) 
Markov regime switching model (see Weron, 2008);  and (9) Recursive seasonal models 
where at each step the number of outliers is reduced based on the marginal reduction 
of the mean squared error (MSE) obtained from fitting a seasonal pattern to the new 
series (Janczura and Weron, 2010).

In this study we apply the methods (1), (2), (4), (6), (9). We did not apply (3) since 
we are not working with log-returns or price returns for our time series. We also did not 
employ (5) since we eliminate long term seasonality with wavelet filtering. The other 
methods applied in this paper are the most common methods used in the literature. In 
Janczura and Weron (2010), which is the inspiration for this study, they employ fixed 
price thresholds, variable thresholds, recursive filters, recursive seasonal and Markov 
regime switching methods for the identification of spikes. Since all of the above methods 
are explained in detail and our procedure is exactly the same as in Janczura and Weron 
(2010) we only present our results.

Figure 1
Mean Daily Electricity Spot Prices from December 1, 2009 to February 13, 2014
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The identification of spikes has a direct impact on the long-term and the stochastic 
components. If the outlier detection method produces too few spikes, then the forecast-
ing performance of the long-term mean component will be poor and will fluctuate more 
often, thus overshooting or undershooting the correct level. However, if too many spikes 
are observed, the long-term component will be too smooth and the stochastic component 
will underestimate the variation in prices.

Figure 2
Detecting price spikes/outliers using the following methods: Fixed Price Threshold; Variable 
price threshold; Recursive filter on prices; Gaussian prediction interval; Recursive seasonal 
model. The deseasonalization approach used here is a wavelet approximation for the LTSC. 

As can be seen in Table 1 and Figure 2, different outlier detection methods yield 
significantly different results in terms of both the number of spikes and drops and also 
the average magnitude of spikes and drops. Figure 2 illustrates the results for a wavelet 
long-term seasonality model. However as Table 1 indicates, the results are generally the 
same across the sin-EWMA long-term seasonality models. According to the wavelet 
LTSC in Table 1, FPT1 (fixed price threshold with deseasonalized log-prices exceeding 
the range of (-0.5,0.5)) produces the smallest number of price spikes (0.32%); and VPT2 
(variable price threshold with 10% highest and 10% lowest deseasonalized log-prices 
treated as outliers) yields the highest number of price spikes (10.03%). Following VPT2, 
VPT1 (variable price threshold with 2.5% highest and 2.5% lowest deseasonalized log-
prices treated as outliers) classifies 2.47% of the observations as spikes. FPT1 (thresh-
olds determined by the mean-excess function as (-0.32,0.32)) and GPI produce similar 
results and RFP and RM identify the same number of price spikes. We expect that the 
model that identified the highest number of the price spikes produced the lowest average 
value of a spike. For example, VPT2 has the lowest average value of 5.03 while FPT1 
has the highest value with 5.72. For the other methods, the average log-price spike lies 
between TL 5.12 and TL 5.47. The results for price drops are similar to the price spikes. 
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According to the wavelet based modeling, FPT1 yields the smallest number of price 
drops while VPT2 produces the highest number of drops. The lowest average log-price 
drop (3.94) is captured by FPT1 and the highest (4.45) comes from VPT2 as predicted.

Table 1
Frequency and Average Magnitude of Price Spikes and Drops                                                   

under Different Outlier Detection Methods Considered

Modeling Long-Term Seasonality
We decompose the log-spot prices into three components: the stochastic part Xt, the short 
term component st, and the long-term seasonality component Tt. We investigate three 
approaches to modeling the log-term seasonality Tt: 1) dummies or piecewise constant 
functions, 2) sine/cosine functions, and 3) wavelets. As in Janczura et al. (2013), we 
apply the same set of models to test the forecasting performance of different long-term 
seasonality models in each of the three approaches.

In the first approach,  each month is fitted to the data. Forecasting using this ap-
proach is straightforward, however it does not yield a smooth seasonal component and 
therefore smoothing techniques may be necessary. In the second approach, log-prices are 
modeled as linear combinations of sine and cosine functions. Sine and cosine functions 
yield periodic results, however, electricity prices often do not show periodic behavior. 
Therefore, multiple sine and cosine terms at different frequencies are utilized.
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The wavelet decomposition is more robust for outliers and is a less periodic al-
ternative to the Fourier series approach. As in Janczura et al. (2013), we consider a 
variety of wavelet models that differ from each other in terms of the way the signal is 
extrapolated before applying the Discrete Wavelet Transform (DWT) and in the choice 
of the input signal.

    The details of these methods are given in Janczura et al. (2013). A total of 152 
models are considered using the three approaches described above. We follow exactly 
the same model codes as given in Table 1 of  [25].

In Tables 2 and 3, we present a classification of the models used in this study.

Table 2
The six digit codes of the 152 models tested in this study, part I. A star (*) indicates that a 
certain digit can take one of a few values and is used to represent subgroups of models. A 

square cup (‘ ’) identifies the digit of interest.
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Table 3
The six digit codes of the 152 models tested in this study, part II. A star (*) indicates that a 

certain digit can take one of a few values and is used to represent subgroups of models.  
A square cup (‘ ’) identifies the digit of interest.

Empirical Results
We compute three measures of forecasting accuracy for each model and for each forecast 
horizon, namely the mean absolute error (MAE), the mean squared error (MSE), and 
the mean absolute percentage error (MAPE). Then, we rank the models from 1 to 152 
based on the values of MAE, MSE, and MAPE for the various forecasting horizons.
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In Table 4, the top twenty models together with the best models from each family 
are listed according to the three measures of forecast accuracy. We use the indices a, b, 
c, d, e for MAE; 1, 2, 3, 4, 5 for MSE; and A, B, C, D, E for MAPE to indicate the best 
five models in terms of each measure. 

Table 4
Top 20 Models According to Each of the Three Forecast Error Measures: MAE in columns 

23, MSE in columns 45 and MAPE in columns 67. The best five models in terms of each 
measure are shown in bold with the index indicating their rank.
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According to MAPE, four out of the top five models are from the 6**** wavelets 
group with an exponential decay to the median fitted to spike-filtered prices. In particular, 
these four models differ only in the choice of the wavelet family (61121b,2,B, 62121d,3,D, 
64121c,1,C) and in the choice of the approximation level (62221e,E ). Surprisingly, the 
best model in terms of MAPE comes from the simple models, i.e. 10004a,A. However, 
it is also consistent with the other wavelet based models in the sense that both models 
support exponential decay to the median with the decay parameter λ = 1/30. 

The first three models ranked according to MSE also appear in the list of MAPE and 
the fourth best model (63121 4) is also from the same wavelet family. The fifth model is 
again from the wavelet family, but fitted to raw prices (without filtering spikes).

The models in the top twenty list are dominated by two sets of models. Eleven of them 
are from the 6**** family and another eight of them belong to 4**** family according 
to all three measures, MSE, MAE, and MAPE. The best models from the other families 
lag far behind the top models, ranking near the middle of the list. The best models from 
the 7**** and 5**** families are ranked at 71 and 94 for MAE (and MAPE), and 76 
and 100 for MSE, respectively. Following them, the median based monthly dummy 
models rank at 113 for MAE (and MAPE) and 103 for MSE. Sine based models fitted 
to raw and spike filtered prices (2**** and 3****) are listed with ranks at 121 and 115 
for MAE (and MAPE) and at 117 and 114 for MSE, respectively.

Among the top 20 models, models 6**** with wavelets with an exponential decay 
to the median provide a better fit to the data if the spikes are replaced by the upper/
lower 2.5% quantiles of the deseasonalized prices (models with ‘2’ as the fourth digit). 
We also observe that for the models 4**** generally S6 approximation performs better 
than the S7 approximation level. It is also clear from Table 4 that for all the models in 
the top twenty, the models with exponential decay to the median with decay parameter 
λ = 1/30 are far superior to models with decay parameter λ = 1/180.

In Figure 6, we use histograms to plot the number of times models from a given family 
are ranked in the top five (which roughly corresponds to the top 3.2%), top ten (or 6.5%) 
and top fifty (or 32.8% ) of all 152 models according to MAEh, MSEh, and MAPEh for 
each of the six forecast horizons h = 1, 2,..., 6. The expected number of models from a 
given family is represented by the white bars in Figure 6 with the assumption that all 
model families are proportionately represented in the “top ...” models. For example, 
the expected number of the 6**** models in the “top 5” is equal to (48/152)·5·6 = 9.47 
where ‘6’ represents the number of forecast horizon h. 

Figure 6 provides results consistent with our observations from Table 4. Models from 
the 6**** family perform much better than the ones in the other families and significantly 
better than the number of expected values. Models from the families 4****, 7****, 
5****, and 1**** come in order after the 6**** models. There is clear evidence in 
Figure 6 that sin-based models do not perform well for modeling long-term seasonality.
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Figure 3
Sample Fits of the Wavelet Based and Simple LTSC Models

Figure 4
Sample Fits of the Wavelet Based and Simple LTSC Models

Figure 5
Sample Fits of the Fourier Decomposition Based and Simple LTSC Models
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Performance across Different Forecasting Horizons
Table 5 and Table 6 contain lists of the top five models according to the three error 
measures MAEh, MSEh, and MAPEh for h = 1,.., 6. We observe that two models among 
the overall best performing models (emphasized in bold in Table 4) are listed in the top 
five for the 1-7 day forecasting horizon. Similarly three of the best performing models 
are ranked in the list of the top five for the 8-30 day, 31-90 day, and 91-182 day fore-
casting horizons.

None of the overall best performing models appear in the top five list for the third 
and fourth quarters of the one-year forecasting window. As expected, the forecasting 
power of the overall best performing models decreases as the time horizon increases. 
The results show that the third and fourth quarters of the one-year forward curve require 
different models.

1-7 Day Forecasting Horizon
For the 1-7 day forecasting horizon, 6**** type models (wavelets with an expo-

nential decay to the median fitted to spike-filtered prices) dominate the other models. 
It is important to note that all 6**** models come from an S6 approximation level 
which is a more sensitive approximation. This result is consistent with the belief that 
a more sensitive approximation level provides a better local calibration and in turn a 
better short term estimation. Among the 6**** models, the ones from the Daubechies 
wavelet family of order 12 perform better than other Daubechies and Coiflets models.

8-30 Day and 31-90 Day Forecasting Horizons
For the 8-30 day forecasting horizon, there is no model other than 6**** in the top 

five list. This result underlines the superior forecasting power of the wavelets family 
with an exponential decay to the median fitted to spike-filtered prices to the one month 
period. We also observe that for both the 8-30 day and the 31-90 day periods, all of 
the 6**** models also belong to the S6 approximation level. It is also interesting to 
note that all of the models in the 8-30 day, 31-90 day, and 91-182 day periods exhibit 
relatively fast exponential decay to the median with λ = 1/30. Furthermore, consistent 
with our previous results, the only simple model which appears in the top five lists of 
different forecasting horizons is 10004, i.e. exponential decay to the median with the 
decay parameter λ = 1/30.

91-182 Day and 183-274 Day Forecasting Horizons
For the 2nd quarter (91-182 day), although there are two 6**** models from the 

overall best performing models, 4**** types of family (wavelets with an exponential 
decay to the median fitted to raw prices) dominate the top five lists according to the 
three different error measures. Surprisingly, although the best forecasting model (42101) 
comes from the family which is fitted to raw prices, the second best model (62121) 
comes from the family which is fitted to spike filtered prices. Good performance of the 
4**** models continues also into the 3rd quarter (i.e. 183-274 day forecasting horizon) 
as they are ranked among the best three models. For this period, all of the 4**** and 
6**** models show slow exponential decay to the median with λ = 1/180.
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Table 5
Top Five Models According to the Three Error Measures. The models are ranked with respect 

to MAPE, independently for each of the three shorter forecasting horizons: 1–7 days, 8–30 
days and 31–90 days.

275-365 Day Forecasting Horizon
It is clear from the 3rd and 4th quarter panels that, towards the very end of the forward 

curve, electricity prices require a different kind of modeling. For instance, although 7**** 
models perform poorly for the forecasting period of a whole year, they are ranked in the 
top five lists for the 3rd and 4th quarter forecasting horizons. Surprisingly, no 4**** 
or 6**** type models exist in the 4th quarter. Apparently, linear decay to the median is 
superior to the exponential decay to the median for the long end of the forward curve.

If one searches for the best performing models, then few candidates exist. Three mod-
els, namely 61121, 62121, and 64121, which appear in the top five models (emphasized 
in bold) in Table 4 also enter into the list of the best five models of 1-7 day, 8-30 day, 
31-90 day, and 91-182 day forecasting horizons. In other words, appropriate models 
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for up to a 182 day forecasting horizon are  the wavelet-based, S6 approximation level 
with spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices 
and with exponential decay to the median with decay parameter λ = 1/30 models. These 
best performing models differ only in the choice of the wavelet family.

Table 6
Top Five Models According to the Three Error Measures and over All Six Datasets. The 
models are ranked with respect to MAPE h,, independently for each of the three longer 

forecasting horizons: 91–182 days, 182–
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Figure 6

Histograms show how many times models from a given family (1****, 2****, 3****, 4****, 
5****, 6****, 7****) are ranked in the top 5 (top row), top 10 (center row) and top 50 (bottom 
row) of all 152 models according to MAE, MSE, and MAPE, (in columns, from left to right) 
for each of the six forecast horizons h = 1,..., 6

Conclusion
Spot electricity prices are often characterized by price spikes and seasonality. The prices 
observed in the Turkish electricity market are no exception. Therefore, it is important 
to find an appropriate outlier detection method and then model long-term seasonal-
ity in prices. We apply different outlier detection methods following Janczura and 
Weron (2010). For modeling the long-term seasonality component, we consider three 
approaches following Janczura et al. (2013), namely, (1) Fourier decomposition, (2) 
piecewise constant functions or dummies, and (3) wavelet decomposition. After remov-
ing the long-term seasonality in the price time series under three different approaches, 
we remove price spikes and compare different outlier detection methods. We observe 
that FPT1 (fixed price threshold with deseasonalized log-prices exceeding the range of 
(-0.5,0.5) ) produces the smallest number of price spikes (0.32%), and VPT2 (variable 
price threshold with 10% highest and 10% lowest deseasonalized log-prices treated as 
outliers) yields the highest number of price spikes (10.03%).

Forecasting performance of long-term seasonality models are compared at six dif-
ferent forecast horizons with a maximum forecasting horizon of one year. We replace 
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the spikes by the mean of the deseasonalized prices, or, alternatively, we replace spikes 
by the upper/lower 2.5% quantiles of deseasonlized prices. In these three approaches 
to modeling long-term seasonality, we utilize a total of 304 models and find that the 
models based on wavelet decomposition perform best in forecasting spot electricity 
prices in Turkey. On the other hand, Fourier decomposition models tend to overshoot 
or undershoot. To the best of our knowledge, this is the first study that offers a compre-
hensive comparison of different long-term seasonality and outlier detection models for 
spot electricity prices in Turkey.
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