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Abstract

Stochastic models of electricity spot prices depend on price spikes and long-term season-
ality. Therefore it is crucial to determine suitable methods for the identification of price
spikes and the modeling of long-term seasonal components (LTSC). Following recent
studies (Janczura and Weron, 2010; Janczura et al., 2013), we compare the proportion of
observations identified as outliers for five different outlier detection methods and three
approaches to long-term seasonality modeling. After removing the effects of outliers, we
compare the out-of-sample forecasting performance for three categories of long-term
seasonality models: dummies, Fourier series, and wavelet-based methods. We consider
various combinations of each approach and perform a comprehensive backtesting compari-
son at different forecasting horizons for the recently liberalized Turkish electricity market.
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Tiirkiye Elektrik Piyasasinda Elektrik Fiyatlarindaki Uzun Donemli
Mevsimselliklerin ve Ani ve Ciddi Hareketlerin Modellenmesi

Ozet

Spot elektrik fiyatlarinin stokhastik modellenmesi fiyatlardaki ani ve ciddi yiikselislere
(ve disiislere) ve uzun dénemli mevsimselliklere baglidir. Bu nedenle ani ve ciddi fiyat
yiikselislerini (ve diisiislerini) tespit edecek metotlarin belirlenmesi ve uzun dénemli
mevsimselliklerin bilegenlerinin modellenmesi bilylik 6nem arz etmektedir. Bu ¢aligmada,
Janczura ve Weron (2010) ve Janczura ve dig. (2013) makalelerindeki yontem takip edi-
lerek bes degisik aykir1 gézlem belirleme metodunun sonuglar degerlendirilmistir. Ayrica
aykir1 gozlemlerin etkileri giderildikten sonra, ii¢ degisik mevsimsellik yontemine (kukla
degiskenler, Fourier serileri, dalgacik tabanli yontemler) goére 6rneklem dis1 gézlemlerin
performansi karsilagtirilmistir. 2009-2013 yillarinda arasinda Tiirkiye’deki spot elektrik
fiyatlarini kullanan ve bu alanda ilk olan ¢aligmamizda, elektrik fiyatlarinin dogru olarak
modellenerek ekonomiye katki saglanmasi hedeflenmistir.

Anahtar kelimeler: elektrik fivatlarmdaki ani ve ciddi yiikselis ve diisiigler, uzun donemli mevsimsellik model-
lemesi, Tiirkiye elektrik fiyatlari, dalgacik methodu.
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ture, weather conditions, and various economic factors that might be cyclical.

Electricity supply is also affected by power plant outages or problems related to
transmission grids or lines. In liberalized electricity markets, such as in the USA and in
Europe, spot prices are determined by supply and demand. In this study we focus on the
Turkish electricity market which was liberalized in 2009. Active trading commenced
in December 2009.

According to TEIAS (Turkish Electricity Transmission Company), Turkey’s
electricity generation capacity rose to S6GW at the end of 2012, up from 42GW in
2008, and electricity generation capacity is expected to reach 66GW by 2015. Per
capita electricity consumption in Turkey is approximately 3000kWh (see Hamzacebi
and Es, 2014). This is less than the average consumption in OECD countries which
is near 8000kWh. Between 2004 and 2013, the Turkish economy grew on average by
4.9%, while electricity consumption grew at a faster rate of 5.7% (Source: Turkish
Statistical Institute). Over the last ten years, Turkey has seen the highest increase in
electricity consumption of all European countries, and places second in the world after
China in this category. This shows that the Turkish economy has an important potential
for further growth in its electricity generation capacity in order to meet the increasing
energy demands of its expanding economy. In an effort to optimize the use of its ex-
isting electricity generation capacity, the Turkish government introduced in 2009 the
electricity spot trading system which has lead to the determination of spot electricity
prices one day ahead in the market.

To effectively manage existing resources, it is crucial to have reliable forecasts of
electricity prices (Weron, 2006). The regulatory issues regarding the energy market in
Turkey are discussed by Cetin and Oguz (2007), Bagdadioglu and Odyakmaz (2009), and
Erdogdu (2010). Although there are many studies that model and explain the electricity
consumption and demand in Turkey (e.g. Altinay and Karagol, 2005; Hamzacebi and
Es, 2014; Akay and Atak, 2007; Hamzacebi, 2007; Ediger and Tatlidil, 2002; Boliik
and Kog, 2010), there are very few studies which model electricity spot prices after
the establishment of the spot market in 2009. Gokgoz and Atmaca (2012) use spot
electricity prices to determine optimal electricity generation asset allocation. To the best
of our knowledge, the only studies that model spot prices are provided by Azize and
Talasli (2014), Stevenson et al. (2006), and Nowotarski et al. (2013).

Electricity prices exhibit strong seasonality, mean reversion, and spikes (as is
documented in Azize and Talasli, 2014; Weron, 2008; Kii¢iikali and Barig, 2010), and
stochastic models with mean reversion, spikes, and seasonality are commonly utilized.
Another approach is the use of regime switching models as in Weron (2008). Furthermore,
stochastic models allow for the consistent pricing of derivatives instruments written on
spot electricity prices. The studies provided by Kiigiikali and Barig (2010), Azize and
Talasl1 (2014), and Benth et al. (2012) consider mean reverting diffusion processes with
seasonality and spikes. Multi-factor stochastic modeling of Turkish electricity spot prices
can be found in Azize and Talash (2014). The main methodologies used in electricity
price forecasting have been reviewed by Aggarval et al. (2009). They also present the

Electricity is a non-storable commodity with consumption dependent on tempera-
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application of various models on different electricity markets.

The choices of method for detecting price spikes and modeling long-term seasonal
components have strong consequences for the parameter estimates and the fit of the
stochastic models. There are different methodologies in the literature to model the trend
of the seasonal component of electricity spot prices. One commonly used simple method
is the application of piecewise constant functions (or dummies) for the months (see
Fanone et al., 2013, Fleten et al., 2011; Haldrup et al. 2010; Higgs and Worthington,
2008). Another method is the use of sums of sinusoidal functions of different frequencies
(see Keles et al., 2012; Erlwein et al., 2010; Koopman et al., 2007; Cartea and Figueroa,
2005). Another way to model the long term seasonal component is the applicaiton of
wavelet decomposition and smoothing techniques (see Conejo et al., 2005; Janczura and
Weron, 2010, 2012; Schlueter, 2010; Stevenson, 2001; Stevenson et al., 2006; Weron,
2006, 2009; Weron et al., 2004a,b).

In this study we consider a wide range of outlier detection methods and long-term
seasonality models which have not yet been considered for Turkish spot electricity
prices. Based on our analysis, we then provide recommendations for the modeling of
spot electricity prices in Turkey.!'! Our findings can also provide guidance for other en-
ergy markets that were recently liberalized or which are in the process of liberalization.

Data

Our dataset consists of 1509 observations of daily electricity spot prices in Turkey from
December 1, 2009 to February 13, 2014. There are two ways to represent electricity
prices for stochastic models. We can either model the spot price p, directly or the log
price time series, i.e. In(p,). In the first approach, we have p, =T, + s, + X,, where T, is
the long-term trend component, s, is the short term seasonality component, and X, is the
stochastic component. For the second approach, we write p, = exp(T, + s, + X,), which is
in multiplicative form and ensures non-negativity of spot prices. In some datasets, the
spot price of electricity can be negative since it is usually costly for power companies
to shut down and restart production. However, though uncommon, we have no negative
prices in our dataset. Notwithstanding, we still prefer to use the multiplicative form
which guarantees positive prices. The dataset of spot electricity prices, displayed in
Figure 1, exhibits spikes and seasonality.

Detecting Price Spikes

The proper identification of spikes is a crucial part of models for electricity spot prices
since spikes can significantly influence the deterministic and stochastic components of
amodel. In the literature, the following spike identification methods have been applied:
(1) fixed price thresholds where all prices exceeding some suitably chosen price level are
classified as spikes (e.g. see Boogert and Dupont, 2008); (2) Variable price thresholds

11" A large set of MATLAB functions for different outlier and long-term seasonality models are provided by R. Weron on
the website: http://ideas.repec.org/e/pwe42.html, which we used in our study.
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Figure 1
Mean Daily Electricity Spot Prices from December 1, 2009 to February 13, 2014
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where a certain percentage of the highest (and/or lowest) prices, e.g., the upper 1% of
prices are classified as outliers (see Mayer et al., 2012); (3) Fixed price change thresholds
where price increments or price returns exceeding some threshold are classified as outliers
(Bierbrauer et al., 2004); (4) Variable price change thresholds, more commonly known
as the “recursive filter” technique, where prices corresponding to the price increments
(or returns) exceeding three standard deviations of all returns are removed one by one
in an iterative procedure (c.f. Weron, 2006); (5) Wavelet filtering where the signal (the
price series) is first decomposed using the wavelet transform, then reconstructed up to
a certain level of detail (c.f. Triick et al., 2007); (6) Thresholds implied by the Gaussian
90% prediction intervals (see Borovkova and Permana, 2006); (7) Thresholds yielding
the best model in terms of matching kurtosis (see Geman and Roncoroni, 2006); (8)
Markov regime switching model (see Weron, 2008); and (9) Recursive seasonal models
where at each step the number of outliers is reduced based on the marginal reduction
of the mean squared error (MSE) obtained from fitting a seasonal pattern to the new
series (Janczura and Weron, 2010).

In this study we apply the methods (1), (2), (4), (6), (9). We did not apply (3) since
we are not working with log-returns or price returns for our time series. We also did not
employ (5) since we eliminate long term seasonality with wavelet filtering. The other
methods applied in this paper are the most common methods used in the literature. In
Janczura and Weron (2010), which is the inspiration for this study, they employ fixed
price thresholds, variable thresholds, recursive filters, recursive seasonal and Markov
regime switching methods for the identification of spikes. Since all of the above methods
are explained in detail and our procedure is exactly the same as in Janczura and Weron
(2010) we only present our results.
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The identification of spikes has a direct impact on the long-term and the stochastic
components. If the outlier detection method produces too few spikes, then the forecast-
ing performance of the long-term mean component will be poor and will fluctuate more
often, thus overshooting or undershooting the correct level. However, if too many spikes
are observed, the long-term component will be too smooth and the stochastic component
will underestimate the variation in prices.

Figure 2

Detecting price spikes/outliers using the following methods: Fixed Price Threshold; Variable
price threshold; Recursive filter on prices; Gaussian prediction interval; Recursive seasonal
model. The deseasonalization approach used here is a wavelet approximation for the LTSC.
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As can be seen in Table 1 and Figure 2, different outlier detection methods yield
significantly different results in terms of both the number of spikes and drops and also
the average magnitude of spikes and drops. Figure 2 illustrates the results for a wavelet
long-term seasonality model. However as Table 1 indicates, the results are generally the
same across the sin-EWMA long-term seasonality models. According to the wavelet
LTSCin Table 1, FPTI (fixed price threshold with deseasonalized log-prices exceeding
the range of (-0.5,0.5)) produces the smallest number of price spikes (0.32%); and VPT2
(variable price threshold with 10% highest and 10% lowest deseasonalized log-prices
treated as outliers) yields the highest number of price spikes (10.03%). Following VPT2,
VPT1 (variable price threshold with 2.5% highest and 2.5% lowest deseasonalized log-
prices treated as outliers) classifies 2.47% of the observations as spikes. FPT1 (thresh-
olds determined by the mean-excess function as (-0.32,0.32)) and GPI produce similar
results and RFP and RM identify the same number of price spikes. We expect that the
model that identified the highest number of the price spikes produced the lowest average
value of a spike. For example, VPT2 has the lowest average value of 5.03 while FPT1
has the highest value with 5.72. For the other methods, the average log-price spike lies
between TL 5.12 and TL 5.47. The results for price drops are similar to the price spikes.
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According to the wavelet based modeling, FPT1 yields the smallest number of price
drops while VPT2 produces the highest number of drops. The lowest average log-price
drop (3.94) is captured by FPT1 and the highest (4.45) comes from VPT?2 as predicted.

Table 1

Frequency and Average Magnitude of Price Spikes and Drops
under Different Outlier Detection Methods Considered

Frequency of price spikes | Average magnitude of
log-price spike
Filter | Wavelet Sin-EWMA | Wavelet | Sin-EWMA

FPT1 | 0.32% 0.26 % 5.72 5.96
FPT2 | 1.76% 3.06 % 5.22 5.21
VPT1 | 247 % 2.47 % 5.12 5.24
VPT2 | 10.03% 10.03% 5.03 5.11
RFP 0.59% 0.59 % 5.47 5.55
GPI 1.56 % 1.82 % 5.25 5.28
RM 0.59% 18.75% 5.47 5.07

Frequency of price drops | Average magnitude of
log-price drop
Filter | Wavelet | Sin-EWMA | Wavelet | Sin-EWMA

FPT1 | 1.43% 2.02 % 3.94 3.98
FPT2 | 4.17% 4.88 % 4.17 4.21
VPT1 | 247 % 247 % 4.01 4.04
VPT2 | 10.03% 10.03% 4.45 4.42
RFP | 2.99 % 2.73 % 4.06 4.06
GPI 4.75% 4.69 % 4.21 4.20
RM 1.63% 17.77% 3.96 4.59

Modeling Long-Term Seasonality

We decompose the log-spot prices into three components: the stochastic part X,, the short
term component s,, and the long-term seasonality component T,. We investigate three
approaches to modeling the log-term seasonality T,: 1) dummies or piecewise constant
functions, 2) sine/cosine functions, and 3) wavelets. As in Janczura et al. (2013), we
apply the same set of models to test the forecasting performance of different long-term
seasonality models in each of the three approaches.

In the first approach, each month is fitted to the data. Forecasting using this ap-
proach is straightforward, however it does not yield a smooth seasonal component and
therefore smoothing techniques may be necessary. In the second approach, log-prices are
modeled as linear combinations of sine and cosine functions. Sine and cosine functions
yield periodic results, however, electricity prices often do not show periodic behavior.
Therefore, multiple sine and cosine terms at different frequencies are utilized.



MODELING LONG-TERM SEASONALITY AND SPIKES OF THE SPOT ELECTRICITY PRICES IN TURKEY 7

The wavelet decomposition is more robust for outliers and is a less periodic al-
ternative to the Fourier series approach. As in Janczura et al. (2013), we consider a
variety of wavelet models that differ from each other in terms of the way the signal is
extrapolated before applying the Discrete Wavelet Transform (DWT) and in the choice
of the input signal.

The details of these methods are given in Janczura et al. (2013). A total of 152
models are considered using the three approaches described above. We follow exactly
the same model codes as given in Table 1 of [25].

In Tables 2 and 3, we present a classification of the models used in this study.

Table 2

The six digit codes of the 152 models tested in this study, part I. A star (*) indicates that a
certain digit can take one of a few values and is used to represent subgroups of models. A
square cup (‘L") identifies the digit of interest.

Digit Value | Meaning
Simple models (1000%¥) — 8 models in total

1000U 1 Mean price in the calibration window

2 Extrapolated linear regression of prices in the calibration
window

3 Median price in the calibration window

4 Exponential decay to the median with the decay parameter
A=

5 Exponential decay to the median with the decay parameter
A=

6 Linear decay to the median

7 Mean based monthly dummies

8 Median based monthly dummies

Sines fitted to raw prices (2¥*¥00) — 12 models
2000 | 1,2,3,4 | Number of sines used to represent the LTSC

2x100 |1 Periods of the given number of sines estimated
2 Periods set to 1, % é 11 of a year, respectively
3 Period of the 1st sine estimated, remaining periods set to

1, i,}i of a year
Sines fitted to spike-filtered prices (3***0) — 24 models
3 U *00 1,2,3,4 | Number of sines used to represent the LTSC

3x100 |1 Periods of the given number of sines estimated
2 Periods set to 1, %, é 1‘ of a year, respectively
3 Period of the 1st sine estimated, remaining periods set to
1,3, % of a year.
3xxU0 |1 Spikes replaced by the mean of the deseasonalized prices
2 Spikes replaced by the upper/lower 2.5% quantiles of the

deseasonalized prices

Wavelets with an exponential decay to the median fitted to
raw prices (4¥¥0*) 24 models

Daubechies wavelet family of order 12 (db12)

Daubechies wavelet family of order 24 (db24)

Coiets wavelet family of order 2 (coif2)

Coiets wavelet family of order 4 (coif4)

Se approximation level

S7 approximation level

Sg approximation level

Exponential decay to the median with the decay parameter
A=

Exponential decay to the median with the decay parameter

4 U 0%

4 % L0*

—_ N = W N

4 % x0U

no

N |
A= 1
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Table 3

The six digit codes of the 152 models tested in this study, part II. A star (*) indicates that a
certain digit can take one of a few values and is used to represent subgroups of models.
A square cup (‘L) identifies the digit of interest.

Digit Value | Meaning

Wavelets with a linear decay to the median fitted to raw

prices (5¥*00) 12 models

Daubechies wavelet family of order 12 (db12)

Daubechies wavelet family of order 24 (db24)

Coiets wavelet family of order 2 (coif2)

Coiets wavelet family of order 4 (coif4)

Se approximation level

S7 approximation level

Sg approximation level

Wavelets with an exponential decay to the median fitted to

spike-filtered prices (6****) 48 models

Daubechies wavelet family of order 12 (db12)

Daubechies wavelet family of order 24 (db24)

Coiets wavelet family of order 2 (coif2)

Coiets wavelet family of order 4 (coif4)

Se approximation level

S7 approximation level

Ss approximation level

Spikes replaced by the mean of the deseasonalized prices

Spikes replaced by the upper/lower 2.5% quantiles of the

deseasonalized prices

Exponential decay to the median with the decay parameter

A=

2 Exponential decay to the median with the decay parameter
A=y

Wavelets with a linear decay to the median fitted to spike-

filtered prices (7¥**0) 24 model

Daubechies wavelet family of order 12 (db12)

Daubechies wavelet family of order 24 (db24)

Coiets wavelet family of order 2 (coif2)

Coiets wavelet family of order 4 (coif4)

S¢ approximation level

S approximation level

Ss approximation level

Spikes replaced by the mean of the deseasonalized prices

Spikes replaced by the upper/lower 2.5% quantiles of the

deseasonalized prices

5 L %00

=W N =

5% L00

W N =

6 L * % %

6 % L * *

6% x U x

B = W R = W N

—

6 % x % L

TU*x%0

TxUx0

TxxU0

B = W W

Empirical Results

We compute three measures of forecasting accuracy for each model and for each forecast
horizon, namely the mean absolute error (MAE), the mean squared error (MSE), and
the mean absolute percentage error (MAPE). Then, we rank the models from 1 to 152
based on the values of MAE, MSE, and MAPE for the various forecasting horizons.
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In Table 4, the top twenty models together with the best models from each family
are listed according to the three measures of forecast accuracy. We use the indices a, b,
¢, d, e for MAE; 1,2, 3,4, 5 for MSE; and A, B, C, D, E for MAPE to indicate the best
five models in terms of each measure.

Table 4

Top 20 Models According to Each of the Three Forecast Error Measures: MAE in columns
23, MSE in columns 45 and MAPE in columns 67. The best five models in terms of each
measure are shown in bold with the index indicating their rank.

| No. MAE  Model MSE  Model MAPE  Model |
1 0.1401 100042A 0.0327 64121<%C  2.806% 10004>A
2 0.1402 61121>2B 00327 61121>2B 2807% 61121>2B
3 0.1402 64121<%C  0.0328 6212143P  2808% 64121<1.C
4 0.1402 62121943P 00328 631214 2.808% 621219:3.D
5 0.1403 62221°F 0.0329 44101° 2.809% 62221°F
6 0.1403 41101 0.0329 41101 2.810% 41101
7 0.1403 44101° 0.0329 62221°F 2.811% 44101°
8 0.1403 42101 0.0329 61221 2.811% 42101
9 0.1404 64221 0.0329 42101 2.812% 64221
10 0.1404 61221 0.0329 100042  2813% 61221
11 0.1405 42201 0.0330 43101 2.814% 631214
12 0.1405 43101 0.0331 41201 2.815% 42201
13 0.1405 631214 0.0331 42201 2.815% 43101
14 0.1406 41201 0.0331 64221 2.817% 41201
15 0.1407 44201 0.0332 64111 2.819% 44201
16 0.1413 63221 0.0333 62111 2.830% 63221
17 0.1415 43201 0.0333 61111 2.835% 62111
18 0.1416 62111 0.0333 44201 2.835% 43201
19 0.1417 61111 0.0334 63111 2.837% 61111
20  0.1417 64111 0.0334 10003 2.837% 64111
71 0.1470 72110 . . 2.957% 72110
(. . 0.0382 72110 . .
94  0.1494 52200 . . 3.008% 52200
100 . : 0.0404 53300 ] .
103 . . 0.0410 10008 . .
113 0.1524 10008 . . 3.054% 10008
114 . . 0.0471 31210 . .
115 0.1740 32210 . . 3.476% 32210
117 . . 0.0481 21200 . .
121  0.1778 22200 . . 3.554% 22200
131 0.1845 10007 0.0559 10007 3.686% 10007
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According to MAPE, four out of the top five models are from the 6**** wavelets
group with an exponential decay to the median fitted to spike-filtered prices. In particular,
these four models differ only in the choice of the wavelet family (6112158, 62121¢3P,
64121y and in the choice of the approximation level (62221%F ). Surprisingly, the
best model in terms of MAPE comes from the simple models, i.e. 10004**, However,
it is also consistent with the other wavelet based models in the sense that both models
support exponential decay to the median with the decay parameter A = 1/30.

The first three models ranked according to MSE also appear in the list of MAPE and
the fourth best model (63121%) is also from the same wavelet family. The fifth model is
again from the wavelet family, but fitted to raw prices (without filtering spikes).

The models in the top twenty list are dominated by two sets of models. Eleven of them
are from the 6**** family and another eight of them belong to 4**** family according
to all three measures, MSE, MAE, and MAPE. The best models from the other families
lag far behind the top models, ranking near the middle of the list. The best models from
the 7**** and 5**** families are ranked at 71 and 94 for MAE (and MAPE), and 76
and 100 for MSE, respectively. Following them, the median based monthly dummy
models rank at 113 for MAE (and MAPE) and 103 for MSE. Sine based models fitted
to raw and spike filtered prices (2**** and 3****) are listed with ranks at 121 and 115
for MAE (and MAPE) and at 117 and 114 for MSE, respectively.

Among the top 20 models, models 6**** with wavelets with an exponential decay
to the median provide a better fit to the data if the spikes are replaced by the upper/
lower 2.5% quantiles of the deseasonalized prices (models with ‘2’ as the fourth digit).
We also observe that for the models 4**** generally S, approximation performs better
than the S, approximation level. It is also clear from Table 4 that for all the models in
the top twenty, the models with exponential decay to the median with decay parameter
A = 1/30 are far superior to models with decay parameter A = 1/180.

In Figure 6, we use histograms to plot the number of times models from a given family
are ranked in the top five (which roughly corresponds to the top 3.2%), top ten (or 6.5%)
and top fifty (or 32.8% ) of all 152 models according to MAE,, MSE,, and MAPE, for
each of the six forecast horizons h =1, 2,..., 6. The expected number of models from a
given family is represented by the white bars in Figure 6 with the assumption that all
model families are proportionately represented in the “top ...” models. For example,
the expected number of the 6**** models in the “top 5” is equal to (48/152)-5-:6 =9.47
where ‘6’ represents the number of forecast horizon h.

Figure 6 provides results consistent with our observations from Table 4. Models from
the 6**** family perform much better than the ones in the other families and significantly
better than the number of expected values. Models from the families 4%#***  7****
S**** and 1**** come in order after the 6**** models. There is clear evidence in
Figure 6 that sin-based models do not perform well for modeling long-term seasonality.
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Figure 3
Sample Fits of the Wavelet Based and Simple LTSC Models
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Performance across Different Forecasting Horizons

Table 5 and Table 6 contain lists of the top five models according to the three error
measures MAE,, MSE,, and MAPE, for h=1,.., 6. We observe that two models among
the overall best performing models (emphasized in bold in Table 4) are listed in the top
five for the 1-7 day forecasting horizon. Similarly three of the best performing models
are ranked in the list of the top five for the 8-30 day, 31-90 day, and 91-182 day fore-
casting horizons.

None of the overall best performing models appear in the top five list for the third
and fourth quarters of the one-year forecasting window. As expected, the forecasting
power of the overall best performing models decreases as the time horizon increases.
The results show that the third and fourth quarters of the one-year forward curve require
different models.

1-7 Day Forecasting Horizon

For the 1-7 day forecasting horizon, 6**** type models (wavelets with an expo-
nential decay to the median fitted to spike-filtered prices) dominate the other models.
It is important to note that all 6**** models come from an S, approximation level
which is a more sensitive approximation. This result is consistent with the belief that
a more sensitive approximation level provides a better local calibration and in turn a
better short term estimation. Among the 6**** models, the ones from the Daubechies
wavelet family of order 12 perform better than other Daubechies and Coiflets models.

8-30 Day and 31-90 Day Forecasting Horizons

For the 8-30 day forecasting horizon, there is no model other than 6**** in the top
five list. This result underlines the superior forecasting power of the wavelets family
with an exponential decay to the median fitted to spike-filtered prices to the one month
period. We also observe that for both the 8-30 day and the 31-90 day periods, all of
the 6**** models also belong to the S, approximation level. It is also interesting to
note that all of the models in the 8-30 day, 31-90 day, and 91-182 day periods exhibit
relatively fast exponential decay to the median with A = 1/30. Furthermore, consistent
with our previous results, the only simple model which appears in the top five lists of
different forecasting horizons is 10004, i.e. exponential decay to the median with the
decay parameter A = 1/30.

91-182 Day and 183-274 Day Forecasting Horizons

For the 2nd quarter (91-182 day), although there are two 6**** models from the
overall best performing models, 4**** types of family (wavelets with an exponential
decay to the median fitted to raw prices) dominate the top five lists according to the
three different error measures. Surprisingly, although the best forecasting model (42101)
comes from the family which is fitted to raw prices, the second best model (62121)
comes from the family which is fitted to spike filtered prices. Good performance of the
4**** models continues also into the 3rd quarter (i.e. 183-274 day forecasting horizon)
as they are ranked among the best three models. For this period, all of the 4**** and

6**** models show slow exponential decay to the median with A = 1/180.
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Table 5

Top Five Models According to the Three Error Measures. The models are ranked with respect
to MAPE, independently for each of the three shorter forecasting horizons: 1-7 days, 8-30
days and 31-90 days.

Forecasting Horizon 1-7 days

| Model MAE, Rank MSE, Rank MAPE; Rank |
6112128 0.1060 1 0.0263 1 2.120% 1
61111 0.1071 4 0.0278 25 2.136% 2
61112 0.1070 3 0.0283 42 2.139% 3
61122 0.1069 2 0.0268 2 2.142% 4
62112 0.1073 6 0.0285 48 2.145% 5
62122 0.1072 5 0.0271 10 2.147% 7
641211C  0.1087 19 0.0269 3 2.179% 20
73220 0.1094 24 0.0269 4 2.192% 23
41101 0.1082 15 0.0270 5 2.165% 15
Forecasting Horizon 8-30 days
Model MAFE; Rank MSE; Rank MAPE; Rank
62111 0.1292 2 0.0351 6 2.582% 1
6212193 0.1292 3 0.0346 2 2.586% 2
6112128 01292 1 0.0343 1 2.587% 3
61111 0.1297 4 0.0349 5 2.594% 4
64111 0.1302 5 0.0348 4 2.605% 5
64121<1C  0.1306 7 0.0347 3 2.615% 7
Forecasting Horizon 31-90 days
Model MAE; Rank MSE; Rank MAPE; Rank
62111 0.1472 1 0.0397 1 2.952% 1
64121-1C  0.1476 2 0.0400 3 2.961% 2
100044 0.1476 3 0.0404 10 2.962% 3
64111 0.1477 5 0.0400 2 2.962% 4
6212143P 01477 4 0.0401 4 2.965% 5
61111 0.1480 7 0.0402 5 2.968% 8

275-365 Day Forecasting Horizon

It is clear from the 3rd and 4th quarter panels that, towards the very end of the forward
curve, electricity prices require a different kind of modeling. For instance, although 7%***
models perform poorly for the forecasting period of a whole year, they are ranked in the
top five lists for the 3rd and 4th quarter forecasting horizons. Surprisingly, no 4****
or 6**** type models exist in the 4th quarter. Apparently, linear decay to the median is
superior to the exponential decay to the median for the long end of the forward curve.

If one searches for the best performing models, then few candidates exist. Three mod-
els, namely 61121, 62121, and 64121, which appear in the top five models (emphasized
in bold) in Table 4 also enter into the list of the best five models of 1-7 day, 8-30 day,
31-90 day, and 91-182 day forecasting horizons. In other words, appropriate models
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for up to a 182 day forecasting horizon are the wavelet-based, S, approximation level
with spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices
and with exponential decay to the median with decay parameter A = 1/30 models. These
best performing models differ only in the choice of the wavelet family.

Table 6

Top Five Models According to the Three Error Measures and over All Six Datasets. The
models are ranked with respect to MAPE h,, independently for each of the three longer
forecasting horizons: 91-182 days, 182—

Forecasting Horizon 91-182 days (2nd quarter)

| Model MAE; Rank MSE; Rank MAPE; Rank |
42101 0.1351 2 0.0283 1 2.711% 1
621214302 0.1355 3 0.0285 2 2.719% 2
43301 0.1350 1 0.0298 26 2.723% 3
62221°F  0.1359 7 0.0287 5 2.725% 4
41101 0.1358 4 0.0286 3 2.725% 5
44101° 0.1358 5 0.0287 6 2.727% 6
43101 0.1360 8 0.0286 4 2.729% 8
Forecasting Horizon 183-274 days (3rd quarter)

| Model MAE; Rank MSEs; Rank MAPE; Rank |
41202 0.1373 1 0.0303 1 2.754% 1
42202 0.13714 2 0.0303 2 2.755% 2
43302 0.1376 4 0.0307 7 2.763% 3
71220 0.1375 3 0.0315 20 2.765% 4
63322 0.1378 9 0.0307 8 2.767% 5
72220 0.1377 5 0.0316 25 2.769% 10
61222 0.1381 12 0.0305 3 2.769% 9
62222 0.1381 14 0.0305 4 2.770% 11
44202 0.1381 15 0.0306 5 2.770% 12
Forecasting Horizon 275-365 days (4th quarter)

| Model MAE; Rank MSE; Rank MAPE; Rank |
53200 0.0303 1 0.1345 1 2.691% 1
73220 0.0305 2 0.1349 2 2.700% 2
54200 0.0305 3 0.1350 3 2.701% 3
51100 0.0306 5 0.1352 4 2.706% 4
74220 0.0306 4 0.1352 6 2.706% 5
54100 0.0307 6 0.1352 5 2.707% 6




MODELING LONG-TERM SEASONALITY AND SPIKES OF THE SPOT ELECTRICITY PRICES IN TURKEY 15

Figure 6

Histograms show how many times models from a given family (1%#%%*, 2%%%% Zkiix gikdk
Sk Fkkk TrEkE) are ranked in the top 5 (top row), top 10 (center row) and top 50 (bottom
row) of all 152 models according to MAE, MSE, and MAPE, (in columns, from left to right)
for each of the six forecast horizons h =1...., 6
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Conclusion

Spot electricity prices are often characterized by price spikes and seasonality. The prices
observed in the Turkish electricity market are no exception. Therefore, it is important
to find an appropriate outlier detection method and then model long-term seasonal-
ity in prices. We apply different outlier detection methods following Janczura and
Weron (2010). For modeling the long-term seasonality component, we consider three
approaches following Janczura et al. (2013), namely, (1) Fourier decomposition, (2)
piecewise constant functions or dummies, and (3) wavelet decomposition. After remov-
ing the long-term seasonality in the price time series under three different approaches,
we remove price spikes and compare different outlier detection methods. We observe
that FPT1 (fixed price threshold with deseasonalized log-prices exceeding the range of
(-0.5,0.5) ) produces the smallest number of price spikes (0.32%), and VPT2 (variable
price threshold with 10% highest and 10% lowest deseasonalized log-prices treated as
outliers) yields the highest number of price spikes (10.03%).

Forecasting performance of long-term seasonality models are compared at six dif-
ferent forecast horizons with a maximum forecasting horizon of one year. We replace
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the spikes by the mean of the deseasonalized prices, or, alternatively, we replace spikes
by the upper/lower 2.5% quantiles of deseasonlized prices. In these three approaches
to modeling long-term seasonality, we utilize a total of 304 models and find that the
models based on wavelet decomposition perform best in forecasting spot electricity
prices in Turkey. On the other hand, Fourier decomposition models tend to overshoot
or undershoot. To the best of our knowledge, this is the first study that offers a compre-
hensive comparison of different long-term seasonality and outlier detection models for
spot electricity prices in Turkey.
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