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Abstract

Variance-Gamma model is widely used for option pricing; however there has been little 
research on the empirical performance of this model for emerging market economies. In 
this paper we evaluate the goodness-of-fit of the Variance-Gamma model using index 
returns data from ten different emerging markets. Based on the Chi-square, Anderson-
Darling and Kolmogorov-Smirnov goodness-of-fit test statistics, we show that the 
Variance-Gamma model fits the dataset well and improves upon the fit of the normal 
distribution for emerging stock market indices. Furthermore, under the Variance–Gamma 
model, closed form solutions for pricing European call and put options exist and model 
parameters can be efficiently estimated via the maximum likelihood method. 
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Varyans-Gama Modeli: Gelişen Piyasalar için Bir Uyum İyiliği 
Analizi

Özet

Varyans-Gama modeli opsiyon fiyatlanmasında sıkça kullanıldığı halde bu modelin 
gelişen piyasalardaki ampirik performansı üzerindeki araştırmalar sınırlıdır. Bu makalede 
on farklı gelişen piyasa ekonomisinin hisse senedi endeks getiri verileri kullanılarak 
Varyans-Gama modelinin uyum iyiliği değerlendirilmektedir. Ki-kare, Anderson-Darling 
ve Kolmogorov-Smirnov uyum iyiliği test istatistikleri kullanılarak, Varyans-Gama 
modelinin  gelişen piyasalar hisse senedi endeks getirilerine oldukça uyumlu olduğu ve 
normal dağılıma göreli olarak uyumu arttırdığı gösterilmiştir. Aynı zamanda, Varyans-
Gama modeli altında, Avrupa tipi alım ve satım opsiyonlarının fiyatları için kapalı 
yapıda çözümler mevcuttur ve model parametreleri en büyük olabilirlik yöntemi ile 
etkin bir şekilde kestirilebilmektedir.
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Stock returns are often characterized by leptokurtosis and they exhibit volatility 
clustering.[1] Yet the Black-Scholes model has been the dominant method for 
pricing financial derivatives, even though its fundamental assumptions such as 

normality of stock returns is not consistent with empirical observations. 
Financial derivative pricing builds upon a suitable stochastic process which charac-

terizes an empirical distribution of stock returns. Madan and Senata (1990) argue that 
such a process should possess the following properties: (1) long tailedness relative to 
the normal distribution; (2) finite moments (for at least the lower powers of returns); 
(3) a continuous-time stochastic process with independent stationary increments such 
that the distribution of any increment belongs to the same distribution family; and 
(4) an extension to multivariate processes with elliptic multivariate distributions. The 
Black-Scholes model and the use of geometric Brownian motion satisfy all but the first 
of the above properties. 

The Variance-Gamma (VG) model is a pure jump process with a large number of 
small jumps. In this sense, it resembles the continuous paths of Brownian motion. On 
the other hand, probability distribution function implied by the VG model can capture a 
higher frequency of extreme events than normal distribution. Additionally, the availability 
of closed-form solutions for European call and put options increases the attractiveness 
of the VG model in practice. For example, the Bloomberg software incorporates the 
VG model and provides built-in pricing functions (Carr et al., 2007). 

Apart from the Normal Inverse Gaussian (NIG) process (Barndorff-Nielsen, 1997, 
Barndorff-Nielsen, 1998), the VG process is the only generalized hyperbolic process 
which is closed under convolution, so that the stock price at any point in time is VG 
distributed (Bibby and Sorensen, 2003). Therefore, it is a natural alternative to the 
Black-Scholes model.

While the use of the VG model has gained popularity for option pricing, there has 
been limited research in terms of its fit to historical returns. Madan and Seneta (1987) 
compare the VG model with the symmetric stable distribution and compound events 
models (Press, 1967) using the Chi-square goodness-of-fit statistic for log-returns of 
19 large stocks listed on the Sydney Stock Exchange. They find that the VG model 
achieves the minimum Chi-square statistic for 12 out of 19 stocks. Hurst and Platen 
(1997), Madan et al. (1998) and Seneta (2004) evaluate the performance of the VG 
model utilizing Chi-square and Kolmogorov-Smirnov goodness-of-fit tests. 

The VG model has been empirically shown to improve the out-of-sample pric-
ing performance compared to the Black-Scholes or Merton’s jump-diffusion models 
(Daal and Madan, 2005). For developed stock markets, Hurst and Platen (1997) test 
the symmetric case of the VG model which reduces to a parametric special case of the 
symmetric generalized hyperbolic distribution. Rathegeber et al. (2013) suggest that 
the fit of the VG model can further be improved by introducing a regime-switching 
model for selection of the estimation sample. They provide evidence that, for Dow Jones 
stocks, the VG model yields favorable goodness-of-fit statistics. Finlay (2009) extends 

[1]	 See Cont (2001) for an extensive analysis.
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the VG model to account for the stochastic volatility in returns and the long-memory 
effects in squared returns.

 Emerging markets are often characterized by higher unconditional and conditional 
moments in their empirical return distributions relative to developed markets (see 
Bekeart and Harvey, 1995; Harvey, 1995; Bekeart and Harvey, 1997, and Engle and 
Rangel, 2008). Even within emerging markets there are variations in the tail behavior 
of empirical returns (Gencay and Selçuk, 2004). Therefore, a good fit of a particular 
distribution in the developed markets does not necessitate a similar performance in the 
emerging markets. 

Santis and İmrohoroğlu (1997) and Li and Rose (2009) also document that emerg-
ing markets have higher tail probabilities. A low level of liquidity in emerging markets 
compared to the developed markets also leads to significant deviations (see Bekaert 
et al., 2009).

In this study, we compare the empirical log-return distributions of 10 emerging 
market indices to the theoretical distributions implied by the VG model. This study 
contributes to the existing literature by verifying the goodness-of-fit of the VG model in 
the emerging markets. To the best of our knowledge, this is the first paper investigating 
the fit of  the VG model for emerging markets.

We find that the fit of the VG model is quite satisfactory in terms of Chi-square, 
Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit statistics. Furthermore, 
contrary to the empirical results of Hurst and Platen (1997), which are provided for five 
developed markets, the VG model yields much smaller Anderson-Darling test statistics 
in all of the emerging markets considered in this study. 

The rest of the paper is organized as follows: In the next section, we provide the 
Variance-Gamma model and its properties. Section 3 describes the dataset used in the 
study. In Section 4, we discuss estimation procedures and goodness-of-fit statistics. 
Section 5 concludes the paper.

Modeling Stock Prices under the Variance-Gamma Model

The VG model assumes that the stock price process follows (Seneta, 2004)

� (1)

where  is a Gamma process with stationary differences given as ,  
is standard Brownian motion and  are real constants. Therefore, the log-return 
process is given by

� (2)

We assume  to make the expected activity time change over unit calendar 
time equal to one unit, the scaling change in time being absorbed into  and , noting that 

� (3)
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Under the VG model, log-return of stock prices, denoted by  has 
the following probability density function

�    (4)

for  (see Seneta, 2004), where c is the location,  is skewness,  is the 
scale and  is the shape parameter.  is the modified Bessel function of the 
second kind. The p.d.f.s of VG models are generated by MATLAB software, which 
has the built-in modified Bessel function of the second kind.

In Seneta (2004), the method of moments estimators are given as:

�
(5)

� (6)

� (7)

� (8)

For small values of , one can ignore higher order terms of , and thus the method 
of moments estimators simplify to:

�
(9)

�
(10)

�
(11)

� (12)

The detailed analysis of the VG model is given in Madan and Seneta (1987), Madan 
et al. (1998) and Seneta (2004). An important advantage of the VG model is the avail-
ability of an analytical option pricing formula for European type call/put options (Madan 
et al., 1998). This convenience facilitates pricing of European options once parameters 
of the VG model are estimated.

Data

We utilize a dataset which consists of daily composite index returns for ten emerging 
markets: Turkey, China, India, Brazil, Russia, Indonesia, Malaysia, Thailand, South 
Africa and Mexico. Our dataset covers the period from January 1, 1998 to May 6, 2013. 
Descriptive statistics of daily log-returns are summarized in Table 1. Table 1 shows that 
emerging market index returns have high kurtosis values, which confirms that emerging 
market returns have heavier tails than implied by the normal distribution.
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Table 1
Descriptive Statistics of Daily Log-returns of Stock Market Indices

Mean Stdev Skewness Kurtosis Min Max

Turkey 0.0009 0.0259 0.0957   8.9467  -0.1998 0.1777

China 0.0002 0.0162 -0.0804  7.1727  -0.0926 0.0940

India 0.0004 0.0167 -0.1298  8.5579  -0.1181 0.1599

Brazil 0.0004 0.0213 0.5319   16.8791 -0.1723 0.2882

Russia 0.0007 0.0284 0.2292   16.0124 -0.2066 0.2750

Indonesia 0.0007 0.0168 -0.1832  10.2295 -0.1273 0.1313

Malaysia 0.0003 0.0136 0.5686   69.5893 -0.2415 0.2082

Thailand 0.0004 0.0165 -0.0069  10.7973 -0.1606 0.1135

South Africa 0.0005 0.0131 -0.2678 6.4942  -0.0795 0.0683

Mexico 0.0005 0.0152 0.1452   8.1717  -0.1034 0.1215
 
Estimation

In this section, we provide model parameters estimated by the method of moments 
and maximum likelihood estimators.  The method of moments estimator under the VG 
model is given in Equations (5)-(9). Estimated parameters for the symmetric case of the 
VG model  are provided in Table 2 and for the asymmetric case in Table 3. We 
observe that the estimated  values are small, suggesting that the method of moments 
estimators can be simplified by ignoring the higher order terms of . 

The method of moments estimates are used as the initial values of parameters in the 
maximum likelihood estimation. The results of maximum likelihood estimation applied 
to the mean subtracted daily log-returns are presented in Table 4.

Table 2
Fitted Parameters of the VG Model (symmetric case, )  

by Method of Moments Estimation.

Turkey 0.0009 0.0259  1.9822

China 0.0002 0.0162  1.3909

India 0.0004 0.0167  1.8526

Brazil 0.0004 0.0213  4.6264

Russia 0.0007 0.0284  4.3375

Indonesia 0.0007 0.0168  2.4098

Malaysia 0.0003 0.0136  2.2196

Thailand 0.0004 0.0165  2.5991

South Africa 0.0005 0.0131  1.1647

Mexico 0.0005 0.0152  1.7239
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Table 3
Fitted Parameters of the VG Model (asymmetric case) 

by Method of Moments Estimation.

Turkey 0.0009 0.0004 0.0259  1.9822

China 0.0002 -0.0003 0.0162  1.3909

India 0.0004 -0.0004 0.0167  1.8526

Brazil 0.0004 0.0008 0.0213  4.6264

Russia 0.0007 0.0005 0.0284  4.3375

Indonesia 0.0007 -0.0004 0.0168  2.4098

Malaysia 0.0003 0.0001 0.0136  2.2196

Thailand 0.0004 0.0    0.0165  2.5991

South Africa 0.0005 -0.0010 0.0131  1.1647

Mexico 0.0005 0.0004 0.0152  1.7239

Table 4
Fitted Parameters of the VG Model (asymmetric case) by Maximum  

Likelihood Estimation (MLE applied to the mean excess daily log-returns)

Turkey 0.0009 -0.0007 0.0250  0.9306

China 0.0002 -0.0007 0.0159  0.9429

India 0.0004 -0.0016 0.0163  0.7857

Brazil 0.0004 -0.0013 0.0204  0.7030

Russia 0.0007 -0.0016 0.0263  1.1771

Indonesia 0.0007 -0.0011 0.0160  0.9651

Malaysia 0.0003 -0.0002 0.0113  1.3872

Thailand 0.0004 -0.0001 0.0159  0.8700

South Africa 0.0005 -0.0013 0.0128  0.6134

Mexico 0.0005 -0.0009 0.0148  0.8899

Goodness-of-fit tests

Madan and Seneta (1987) provide evidence that the symmetric case of the VG model 
performs well for 12 out of 19 stocks on the Sydney Stock Exchange, using a Chi-square 
goodness-of-fit test. Seneta (2004) suggests that goodness-of-fit can be improved by 
using the asymmetric case and proposes the use of the Anderson-Darling test. We utilize 
Chi-square, Anderson-Darling and Kolmogorov-Smirnov (K-S) goodness-of-fit tests 
for the stock market indices of ten emerging markets.
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We apply a Chi-square goodness-of-fit test by dividing the range of log-return 
values into subintervals. To make our analysis comparable, we follow the same class 
intervals considered in Madan and Seneta (1987), given by { , -1.0, -0.75, 0.25, 0, 
0.25, 0.75, 1.00, }.

We denote the number of values falling into the ith region as , where  is the 
sample size and  is the probability of a randomly drawn value to fall into the ith re-
gion. Let  denote the observed number of values in the ith region, then we have the 
Chi-square test statistic defined over  different regions as:

� (13)

where  is the number of parameters of the model.
The Anderson-Darling (1952) goodness-of-fit test is a modification of the K-S test 

and attaches higher weights to the tails than the K-S test. The Anderson-Darling test 
statistic is calculated as:

   where

� (14)            

  
are the ordered log-returns, and  is the cumulative distribu-

tion function and  is the sample size. The test statistic, , can be compared to the 
critical values of the normal distribution given in Stephens (1974).[2] 

The Kolmogorov-Smirnov test statistic is given as:

                               �  (15)

where  is the theoretical cumulative distribution function of the distribution 
being tested. Since we estimate the model parameters from the same initial dataset, 
the critical values of the K-S test cannot be used. However, the K-S test statistic can 
be used to quantify the fit of the VG model in comparison to the normal distribution.

Goodness-of-fit test statistics are presented in Table 5. The VG model fits the data 
well for most of emerging the markets with low Chi-square and Anderson-Darling test 
statistics, indicating that the distance between empirical and theoretical distributions 
are small. We observe that the Chi-square goodness-of-fit test rejects the VG model at 
the 99% confidence level only for Russia and Indonesia; whereas for Turkey, China, 
India, Brazil, Malaysia, and Thailand, we fail to reject the VG model at the 95% con-
fidence level.

We also provide plots of the empirical distributions of log-returns with superimposed 
normal and VG probability density functions in Figure 1. The proximity of empirical 
and theoretical distributions verifies the goodness-of-fit of the VG model.

[2]	 The critical values of the Anderson-Darling test are not available for the VG model.
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Table 5
Chi-square and Anderson-Darling Goodness-of-fit Test Statistics for Daily Log-returns

Critical values for Chi-square goodness-of-fit test for normal distribution are given as 12.59 and 16.81 for 95% and 99% 
confidence levels, respectively, whereas for the VG distribution the critical values are given as 9.49 and 13.28 for the same 
confidence levels. (*) indicates rejection at a 5% level and (**) indicates rejection at a 1% level.

Chi-Square Anderson-Darling Kolmogorov-Smirnov

Normal VG Normal VG Normal VG

Turkey 269.08** 7.67 49.33 1.26  0.0738 0.0138

China 289.91**    6.32 39.68     0.40 0.0691 0.0103

India 212.97** 4.01 0.60 0.0610 0.0100

Brazil 145.54** 7.67 1.38  0.0585 0.0138

Russia 446.73** 16.36** 2.76 0.0973 0.0179

Indonesia 357.97**  18.91** 58.54     1.88 0.0813 0.0178

Malaysia 210.87** 8.03 5.82  0.0800 0.0124

Thailand 264.24** 8.04  41.74 0.90 0.0652 0.0125

South 
Africa

144.77** 11.70* 24.58  1.04  0.0492 0.0112

Mexico 294.46**  12.88* 44.27    0.97  0.0671 0.0135

Figure 1
Fitted Normal Distribution vs. the VG Distribution for Daily Log-returns  

of Considered Emerging Stock Market Indices



FITTING THE VARIANCE-GAMMA MODEL� 9

Conclusion 

In this study, we evaluate the performance of the VG model for ten emerging stock 
market indices. Although the VG model is extensively used in practice, to the best of 
our knowledge this study is the first to question the validity of the distributional as-
sumptions of the VG model for emerging markets.

We provide empirical evidence that the probability density function implied by the 
VG model provides a better fit than the normal distribution for emerging markets. Thus, 
for the purposes of financial derivative pricing in emerging markets, the VG model is 
superior to the Black-Scholes model in terms of its fit to the historical returns.
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