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Abstract

In this paper, I revisit the “Shimer puzzle” by comparing business-cycle properties of 
three prominent labor-search models. Providing a standard framework for contrasting 
the three models, I first quantify the sensitivity of Shimer (2005)’s relative labor market 
tightness volatility to business cycle smoothing parametrization. Second, I document 
that Hagedorn and Manovskii (2008)’s proposed solution to the Shimer puzzle depends 
considerably on whether the value of nonmarket activity responds to business cycle 
fluctuations. Third, I report that when specified in the form of a decreasing-returns-to-
scale functional form, the incorporation of decreasing average vacancy posting costs 
by Pissarides (2009) cannot generate decent business-cycle volatilities in the absence 
of further wage stickiness. Overall, my findings point to the particular need for further 
exploring the degree of co-movement between wage rate and nonmarket activity in 
labor-search modelling attempts.
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Emek-Arama Modelleri Üzerine Bir Not

Özet

Bu makale, üç farklı emek-arama model spesifikasyonunun iş döngüsü performanslarını 
karşılaştırarak “Shimer bulmacasını” yeniden ziyaret etmektedir. Üç model için standart 
bir çerçeve oluşturduktan sonra ilk olarak Shimer’in (2005)’ın işgücü piyasasındaki 
sıkılığın verimlilik oranına olan düşük oynaklık sonucunun iş döngüsü yumuşatma 
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parametresine duyarlılığı ölçülmüştür. İkinci olarak Hagedorn ve Manovskii (2008)’nin 
Shimer bulmacasına önerdiği çözümün pazardışı etkinliğin iş döngüsü dalgalanmalarına 
bağlılığı ortaya konmuştur. Üçüncü olarak Pissarides (2009) tarafından öne sürülen aza-
lan ortalama iş ilanı masraf fikrinin azalan-getiri-dönüş fonksiyonel formu ile formüle 
edilmesinin yapışkan ücretler noksanlığında iyi iş döngüsü oynaklıkları sağlayamadığı 
bildirilmektedir. Genel olarak, tüm bu bulgular ücret oranı ile pazardışı aktivitenin be-
raber hareketlilik oranının daha iyi emek-arama modelleme için araştırılması ihtiyacını 
ortaya koymaktadır.                                                                                                                                  

Anahtar Kelimeler: Shimer bulmacası, Schmitt-Grohé ve Uribe algoritması, iş piyasası sıkılığı 
Jel Sınıflaması: E24, E30, E32, J3.

Over the recent decades, labor market dynamics have become an issue of high 
priority to both policy-makers and researchers. The fact that frictionless standard 
real business cycle models fail to generate realistic labor market dynamics has 

motivated numerous studies to find alternative ways to explain observed irregularities. 
(1) These attempts have contributed to the emergence of three major sources of labor 
market imperfections: i) implicit contract theory relates observed wage stickiness to 
risk- aversion of workers and employers, (2) ii) efficiency wage theory by Shapiro and 
Stiglitz (1984) argues for economic efficiency as a result of unemployment due to its 
disciplinary device function, and iii) labor-search theory by Mortensen and Pissarides 
(1994) attempts to endogenize labor market frictions by the use of job creation and job 
destruction in a partial equilibrium design. Among the three branches, labor-search 
models have gained particular popularity in modern economics for the study of labor 
market imperfections, and therefore have been incorporated into several general equi-
librium models.(3)

One unique result by partial and general equilibrium models featuring labor-search 
has been particularly controversial: the unemployment and vacancy volatilities gener-
ated by labor-search models are an order of magnitude lower than those in the data. In 
the literature, this phenomenon has been coined as the “Shimer’s puzzle,” and it has 
motivated alternative ways to tackle the mismatch. In one of these attempts, Hagedorn 
and Manovskii (2008) argue that because of similar grounds as  in Hansen (1985), and 
the fact that partial labor-search models can be regarded as a linear approximation to 
standard non-linear real business cycle models, nonmarket activity (i.e. unemployment 
benefit/home production) needs to be set close to wage rate. (4) Accordingly, Hagedorn 
and Manovskii (2008) show that when nonmarket activity is formulated as a parameter, 
the value of which is calibrated close to steady-state wage rate, volatilities of unemploy-

(1) 	 Among others, see Shimer (2010).
(2) 	 See Rosen (1985) for an elaborate discussion on the implicit contract theory.
(3) 	 Among others, see Merz (1995) and Andolfatto (1996).
(4) 	 Specifically, Hagedorn and Manovskii (2008) refers to Hansen (1985)’s indivisible labor argument for the study 

of real business cycle models, in which households are a priori indifferent between working and not working.
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ment and vacancies fit considerably better with the data. In another attempt address-
ing the Shimer puzzle, Pissarides (2009) shows that imposing only exogenous wage 
stickiness would not satisfactorily resolve the puzzle. Instead of standard proportional 
vacation posting costs, he proposes a fixed-cost-embedded decreasing-vacancy- cost 
formulation, which he argues for a better match with the data.

In this paper, I study the behavior of macroeconomic variables in different labor-
search model specifications with a comparative perspective. Specifically, extending 
on the canonical labor-search model a` la Shimer (2005), I revisit the “Shimer puzzle” 
by contrasting business-cycle performances of three prominent labor-search models.

First, I quantify the sensitivity of Shimer (2005)’s relative labor market tightness 
volatility to business-cycle smoothing parametrization, and document that the use of 
standard quarterly smoothing parameter reduces labor market tightness volatility by as 
much as one-fourth.(5)

Second, I study the Hagedorn and Manovskii (2008) economy, which features a 
nonmarket activity value close to that of wage rate. Throughout my analyses, I formulate 
the value of nonmarket activity in two different approaches. First, I specify nonmarket 
activity as a parameter, the unique value of which is determined at the deterministic 
steady-state as a ratio of the wage rate and remains constant regardless of labor pro-
ductivity shocks, as in Hagedorn and Manovskii (2008). Second, instead of fixing the 
value nonmarket activity to a constant, I endogenize the value of nonmarket activity 
so that the ratio of nonmarket activity to wage rate remains constant not only at the 
steady-state, but also throughout business-cycle fluctuations. In other words, the second 
formulation suggests that the value of nonmarket activity that mainly addresses home 
production or unemployment benefit does not necessarily have to be orthogonal to labor 
productivity shocks, and responds to the developments in the economy. (6)  I show that 
the formulation of nonmarket activity has first-order implications: when nonmarket ac-
tivity is formulated as a parameter, the standard Hagedorn and Manovskii (2008) result 
holds, as the relative volatility of labor market tightness is amplified by as much as an 
order of magnitude. However, when nonmarket activity is endogenized as described, the 
otherwise standard Hagedorn and Manovskii model generates a relative labor market 
tightness volatility figure similar to that of the Shimer model. These findings suggest 
that co-movement of nonmarket activity and wage rate throughout business-cycles is to 
be explored for a better understanding of the Shimer’s puzzle and for the formulating 
of consequent model-based solutions.

Third, following Pissarides (2009), I modify the standard labor-search model by 
introducing decreasing vacancy posting costs, instead of proportional ones. In doing 
so, instead of imposing fixed costs, I employ a decreasing-returns-to-scale vacancy 
posting cost function so as to formulate decreasing average cost of posting vacancies. 

(5) 	 Specifically, I refer to the finding that the use of Hodrick and Prescott smoothing parameter of λ = 1600 for the-
quarterly frequency, instead of λ = 105 by Shimer (2005) reduces relative volatility of labor market tightness by 24%.

(6)	 Throughout the paper, I refer to the two specifications as labor-search models with i) exogenous χ and ii) endog-
enous χ, respectively, where χ refers to nonmarket activity, as discussed in detail in the Model Environment section. 
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I report that decreasing average vacancy postings costs proposal by Pissarides (2009) 
cannot generate decent business-cycle predictions, when formulated as a decreasing-
returns-to-scale functional form.
      Overall, by highlighting the strengths and shortcomings of canonical labor-search 
models in a comparative perspective, this paper intends to contribute to a better under-
standing of tackling the Shimer’s puzzle.
      The outline of the rest of the paper is as follows: in the Model Environment section, 
I describe the details of my extensions to the canonical labor search-model a` la Shimer 
(2005), in Results section, I describe my solution algorithm and present my results, and 
in the Conclusions section, I present my discussions and conclusions.

Model Environment

Households 

There is an infinitely-lived representative household, who has an “infinite” number 
of family members. The size of the infinite-sized household is normalized to measure 
one. All household members are assumed to be participating in the labor force. The 
representative household accordingly maximizes:

subject to 

and
 

where         refers to the expectations operator at time                  refers to the utility 
function, which is assumed to take the natural logarithm form,    refers to the discount 
factor,    refers to consumption at             refers to the real wage rate,       refers to the 
measure of household members who work and     refers to the measure of household 
members do not work,                   refers to nonmarket activity, i.e. unemployment ben-
efit/home production,      refers to the lump-sum flow of profits due to the household’s 
ownership of the representative firm,       refers to the time-invariant exogenous job 
separation rate,     refers to labor market tightness defined per unemployed vacancy, i.e. 
                           refers to the job finding rate.(7)
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my solution algorithm and present my results, and in the Conclusions section, I present my discussions and

conclusions.

Model Environment

Households

There is an infinitely-lived representative household, who has an “infinite” number of family members. The

size of the infinite-sized household is normalized to measure one. All household members are assumed to be

participating in the labor force. The representative household accordingly maximizes:

max
{ct}

E0

∞∑
t=0

βt�u(ct) (1)

subject to

ct = wtn
h
t + utχ+ dt (2)

and

nh
t+1 = (1− δ)(nh

t + utp(θt)) (3)

where E0 refers to the expectations operator at time t=0, �u(·) refers to the utility function, which is assumed
to take the natural logarithm form, β refers to the discount factor, ct refers to consumption at t, wt refers to

the real wage rate, nh
t refers to the measure of household members who work and ut refers to the measure

of household members do not work, χ (or χt) refers to nonmarket activity, i.e. unemployment benefit/home

production, dt refers to the lump-sum flow of profits due to the household’s ownership of the representative

firm, δ refers to the time-invariant exogenous job separation rate, θt refers to labor market tightness defined

4

ing vacancies. I report that decreasing average vacancy postings costs proposal by Pissarides (2009) cannot

generate decent business-cycle predictions, when formulated as a decreasing-returns-to-scale functional form.

Overall, by highlighting the strengths and shortcomings of canonical labor-search models in a comparative

perspective, this paper intends to contribute to a better understanding of tackling the Shimer’s puzzle.

The outline of the rest of the paper is as follows: in the Model Environment section, I describe the de-

tails of my extensions to the canonical labor search-model à la Shimer (2005), in Results section, I describe
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my solution algorithm and present my results, and in the Conclusions section, I present my discussions and

conclusions.

Model Environment

Households

There is an infinitely-lived representative household, who has an “infinite” number of family members. The

size of the infinite-sized household is normalized to measure one. All household members are assumed to be

participating in the labor force. The representative household accordingly maximizes:

max
{ct}

E0

∞∑
t=0

βt�u(ct) (1)

subject to

ct = wtn
h
t + utχ+ dt (2)

and

nh
t+1 = (1− δ)(nh

t + utp(θt)) (3)

where E0 refers to the expectations operator at time t=0, �u(·) refers to the utility function, which is assumed
to take the natural logarithm form, β refers to the discount factor, ct refers to consumption at t, wt refers to

the real wage rate, nh
t refers to the measure of household members who work and ut refers to the measure

of household members do not work, χ (or χt) refers to nonmarket activity, i.e. unemployment benefit/home

production, dt refers to the lump-sum flow of profits due to the household’s ownership of the representative

firm, δ refers to the time-invariant exogenous job separation rate, θt refers to labor market tightness defined

4

ing vacancies. I report that decreasing average vacancy postings costs proposal by Pissarides (2009) cannot

generate decent business-cycle predictions, when formulated as a decreasing-returns-to-scale functional form.

Overall, by highlighting the strengths and shortcomings of canonical labor-search models in a comparative

perspective, this paper intends to contribute to a better understanding of tackling the Shimer’s puzzle.

The outline of the rest of the paper is as follows: in the Model Environment section, I describe the de-

tails of my extensions to the canonical labor search-model à la Shimer (2005), in Results section, I describe
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per unemployed vacancy, i.e. ( vtut
), and p(θt) refers to the job finding rate.7

The household maximization problem yields:

1 = Rt Et
β�u′(ct+1)

�u′(ct) (4)

where Rt denotes the gross return rate of the zero-net-supply risk-free asset. Consequently, the stochastic

discount rate can be expressed as:

Ξt+1|t ≡
β�u′(ct+1)

�u′(ct) (5)

Firms

There is a representative “large” firm, which faces the following profit-maximization problem:

max
nf
t+1,vt

E0

∞∑
t=0

Ξt|0

(
yt − wtn

f
t − ψvt

)
(6)

subject to

nf
t+1 = (1− δ)(nf

t + vtq(θt)) (7)

and

yt = eztnt (8)

where Ξt+1|t ≡ βũ′(ct+1)
ũ′(ct)

refers to the stochastic discount factor, yt refers to the firm’s output, nf
t refers to

the measure of employed workers in production, ψ refers to the cost of posting vacancies, vt refers to the

number of posted job vacancies, and zt refers to the labor productivity technology shock. Further, the law of

motion for the technology shock is an autoregressive process of order one, which can be described formally

as follows:

zt+1 = (1− ρz)z + ρzzt + εzt+1 (9)

where εz is normally distributed with εz ∼ N(0, σz).
7In a general equilibrium model environment, unemployment benefits would not appear in the economy-wide resource constraint,

simply because it is only a form of transfer of resources from one party to the next. In the canonical labor-search model à la Shimer
(2005), χ shows up in the resource constraint, hence interpreting χ as home production is a better way of making sense of the model.
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(2005), χ shows up in the resource constraint, hence interpreting χ as home production is a better way of making sense of the model.

5

per unemployed vacancy, i.e. ( vtut
), and p(θt) refers to the job finding rate.7

The household maximization problem yields:

1 = Rt Et
β�u′(ct+1)

�u′(ct) (4)

where Rt denotes the gross return rate of the zero-net-supply risk-free asset. Consequently, the stochastic

discount rate can be expressed as:

Ξt+1|t ≡
β�u′(ct+1)

�u′(ct) (5)

Firms

There is a representative “large” firm, which faces the following profit-maximization problem:

max
nf
t+1,vt

E0

∞∑
t=0

Ξt|0

(
yt − wtn

f
t − ψvt

)
(6)

subject to

nf
t+1 = (1− δ)(nf

t + vtq(θt)) (7)

and

yt = eztnt (8)

where Ξt+1|t ≡ βũ′(ct+1)
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ũ′(ct)

refers to the stochastic discount factor, yt refers to the firm’s output, nf
t refers to

the measure of employed workers in production, ψ refers to the cost of posting vacancies, vt refers to the

number of posted job vacancies, and zt refers to the labor productivity technology shock. Further, the law of

motion for the technology shock is an autoregressive process of order one, which can be described formally

as follows:

zt+1 = (1− ρz)z + ρzzt + εzt+1 (9)

where εz is normally distributed with εz ∼ N(0, σz).
7In a general equilibrium model environment, unemployment benefits would not appear in the economy-wide resource constraint,

simply because it is only a form of transfer of resources from one party to the next. In the canonical labor-search model à la Shimer
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The optimality condition by the firm yields:

ψ

q(θt)
= (1− δ)Et Ξt+1|t

(
ezt+1 − wt+1 +

ψ

q(θt+1)

)
(10)

which implies that the firm’s cost of posting vacancies needs to be equal to the discounted expected profit by

filling the vacancy.

Wage Bargaining

Each period, real wage results from a bargaining process between the firm and the worker, and a single wage

rate is determined by Nash bargaining.8 The equilibrium wage solves the following Nash bargaining problem:

max
wt

(Wt − Ut)
ν (Jt − Vt)

1−ν (11)

where ν ∈ (0, 1) refers to the worker’s, and 1− ν refers to the employer’s bargaining power. The household’s

asset value of getting employed, denoted asWt, follows:

Wt = wt + Et

[
Ξt+1|t ((1− δ)Wt+1 − δUt+1)

]
(12)

The household’s asset value of remaining unemployed, denoted as Ut requires:

Ut = χ+ Et

[
Ξt+1|t (p(θt)(1− δ)Wt+1 − (1− p(θt))(1− δ)Ut+1)

]
(13)

The firm’s asset value to fill a vacant job, denoted as Jt, follows:

Jt = ezt − wt + Et

[
Ξt+1|t ((1− δ)Jt+1)

]
(14)

Note that Equation (10) and (14) jointly imply that

Jt = ezt − wt +
ψ

q(θt)
(15)

8Under some assumptions, Nash bargaining is known to correspond to the alternating bargaining game à la Rubinstein (1982),
hence another way to interpret the determination of wages could be the alternating offers between the worker and the employer in a
continuous-time setup.
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Wage Bargaining

Each period, real wage results from a bargaining process between the firm and the 
worker, and a single wage rate is determined by Nash bargaining. (8) The equilibrium 
wage solves the following Nash bargaining problem:

where                    refers to the worker’s, and	     refers to the employer’s bargain-
ing power. The household’s asset value of getting employed, denoted as          follows:

The household’s asset value of remaining unemployed, denoted as       requires:

The firm’s asset value to fill a vacant job, denoted as       follows:

Note that Equation (10) and (14) jointly imply that
 

needs to hold, as well.

Lastly,      denotes the asset value of posting a vacancy for a job, which is zero in 
equilibrium. The solution to the Nash-bargaining problem yields the following surplus-
sharing rule:

Plugging Equations (12), (13), and (14) and (15) into the surplus-sharing rule (16), 
wage rate follows:

(8) 	 Under some assumptions, Nash bargaining is known to correspond to the alternating bargaining game a la Rubinstein 
(1982), hence another way to interpret the determination of wages could be the alternating offers between the worker and 
the employer in a continuous-time setup.
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The competitive equilibrium for the model economy is a list of sequences:

{ct, nh
t , n

f
t , ut, vt, Rt, q(θt), p(θt), wt, χt

9}∞t=0 for the given parameters {β, δ, ν, ρ, κ} and the exogenous pro-

cess zt, which satisfy the below set of equations (18)−(27):

The household’s optimal consumption-saving decision rule requires:

1 = RtEt
β�u′(ct+1)

�u′(ct) (18)

The firm’s optimal job-creation and vacancy-posting condition implies:10

ψ

q(θt)
= (1− δ)EtΞt+1|t

(
ezt+1 − wt+1 +

ψ

q(θt+1)

)
(19)

where the stochastic discount factor follows Ξt+1|t ≡
βũ′(ct+1)
ũ′(ct)

.

Real wage rate solves the Nash-bargaining problem:

wt = νezt + (1− ν)χ+ νψθt (20)
9As discussed in the previous section, when nonmarket activity χ is specified as a parameter so that its value is time-invariant and

does not respond to labor productivity shocks, it is added to the parameter set instead of the list of sequences.
10This condition is modified for the Pissarides model, which is discussed in more detail in the following section.
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ũ′(ct)

.

Real wage rate solves the Nash-bargaining problem:

wt = νezt + (1− ν)χ+ νψθt (20)
9As discussed in the previous section, when nonmarket activity χ is specified as a parameter so that its value is time-invariant and

does not respond to labor productivity shocks, it is added to the parameter set instead of the list of sequences.
10This condition is modified for the Pissarides model, which is discussed in more detail in the following section.

7

The optimality condition by the firm yields:

ψ

q(θt)
= (1− δ)Et Ξt+1|t

(
ezt+1 − wt+1 +

ψ

q(θt+1)

)
(10)

which implies that the firm’s cost of posting vacancies needs to be equal to the discounted expected profit by

filling the vacancy.

Wage Bargaining

Each period, real wage results from a bargaining process between the firm and the worker, and a single wage

rate is determined by Nash bargaining.8 The equilibrium wage solves the following Nash bargaining problem:

max
wt

(Wt − Ut)
ν (Jt − Vt)

1−ν (11)

where ν ∈ (0, 1) refers to the worker’s, and 1− ν refers to the employer’s bargaining power. The household’s

asset value of getting employed, denoted asWt, follows:

Wt = wt + Et

[
Ξt+1|t ((1− δ)Wt+1 − δUt+1)

]
(12)

The household’s asset value of remaining unemployed, denoted as Ut requires:

Ut = χ+ Et

[
Ξt+1|t (p(θt)(1− δ)Wt+1 − (1− p(θt))(1− δ)Ut+1)

]
(13)

The firm’s asset value to fill a vacant job, denoted as Jt, follows:

Jt = ezt − wt + Et

[
Ξt+1|t ((1− δ)Jt+1)

]
(14)

Note that Equation (10) and (14) jointly imply that

Jt = ezt − wt +
ψ

q(θt)
(15)

8Under some assumptions, Nash bargaining is known to correspond to the alternating bargaining game à la Rubinstein (1982),
hence another way to interpret the determination of wages could be the alternating offers between the worker and the employer in a
continuous-time setup.
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which can be described formally as follows: 
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where εz is normally distributed with εz N (0, σz). 
The optimality condition by the firm yields: 
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which implies that the firm’s cost of posting vacancies needs to be equal to the discounted expected 
profit by filling the vacancy. 

 
Wage Bargaining 

Each period, real wage results from a bargaining process between the firm and the worker, and a 
single wage rate is determined by Nash bargaining. (8) The equilibrium wage solves the following 
Nash bargaining problem: 

max (Wt Ut)ν (Jt Vt)1−ν (11) 
wt 

where ν (0, 1) refers to the worker’s, and 1 ν refers to the employer’s bargaining power. The 
household’s asset value of getting employed, denoted as Wt, follows: 

Wt  = wt + 𝔼𝔼𝑡𝑡 [   Ξt+1|t ((1 − δ)Wt+1 − δUt+1) ] (12) 

The household’s asset value of remaining unemployed, denoted as Ut requires: 

Ut = χ + 𝔼𝔼𝑡𝑡  Ξt+1|t (p(θt)(1 − δ)Wt+1 − (1 − p(θt))(1 − δ)Ut+1) (13) 

The firm’s asset value to fill a vacant job, denoted as Jt, follows: 

Jt = ezt  − wt + 𝔼𝔼𝑡𝑡[ Ξt+1|t ((1 − δ)Jt+1) ] (14) 

Note that Equation (10) and (14) jointly imply that 

 
 
 
needs to hold, as well. 

Jt = ezt − wt    ψ  
+ 

q(θt) 
(15) 

Lastly, Vt denotes the asset value of posting a vacancy for a job, which is zero in equilibrium. 
The solution to the Nash-bargaining problem yields the following surplus-sharing rule: 

(1 − ν)(Wt − Ut) = νJt (16) 
 

(8) Under some assumptions, Nash bargaining is known to correspond to the alternating bargaining game a la Rubinstein 
(1982), hence another way to interpret the determination of wages could be the alternating offers between the worker 
and the employer in a continuous-time setup. 
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Equilibrium

The competitive equilibrium for the model economy is a list of sequences:                                                                                        	
					               for the given parameters and the ex-
ogenous process      which satisfy the below set of equations (18) (27): 
The household’s optimal consumption-saving decision rule requires: (9)

The firm’s optimal job-creation and vacancy-posting condition implies: (10)

where the stochastic discount factor follows 

Real wage rate solves the Nash-bargaining problem:

Aggregate employment follows its law of motion:

The job matching identity holds:

where          is a constant-returns-to-scale (CRTS) matching technology function,               	
is the rate at           which vacant jobs are filled, and          is the rate at which unemployed 
individuals get employed.
Labor market clears:

Each member of the household participates in the labor pool, either as employed or 
unemployed:

(9) 	 As discussed in the previous section, when nonmarket activity χ is specified as a parameter so that its value is time-invar-
iant and does not respond to labor productivity shocks, it is added to the parameter set instead of the list of sequences. 

(10) 	 This condition is modified for the Pissarides model, which is discussed in more detail in the following section.

Aggregate employment follows its law of motion:

nt+1 = (1− δ)(nt +m(ut, vt)) (21)

The job matching identity holds:

m(ut, vt) = κuξtv
1−ξ
t = p(θt)ut = q(θt)vt (22)

wherem(·) is a constant-returns-to-scale (CRTS)matching technology function, q(·) is the rate at which vacant

jobs are filled, and p(·) is the rate at which unemployed individuals get employed.

Labor market clears:

nf
t = nh

t = nt (23)

Each member of the household participates in the labor pool, either as employed or unemployed:

nt + ut = 1 (24)

The law of motion for labor factor productivity follows:

zt+1 = (1− ρz)z + ρzzt + εzt+1 with εzt ∼ N(0, σz). (25)

Economy-wide aggregate resource constraint holds:

yt = ct + ψvt − utχ (26)

Final output is produced only by the employed workers, and labor productivity is governed by the specified

stochastic process:11

yt = eztnt (27)
11Note that this condition is implied by the joint flow budget constraint of the household and the firm. The intuition for this resource

constraint is that the total production of real goods in this economy is composed of the firm’s production and home production, that
is, yt + utχ, out of which the household consumes and the firm covers its real vacancy-posting costs.
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needs to hold, as well.

Lastly, Vt denotes the asset value of posting a vacancy for a job, which is zero in equilibrium.

The solution to the Nash-bargaining problem yields the following surplus-sharing rule:

(1− ν)(Wt − Ut) = νJt (16)

Plugging Equations (12), (13), and (14) and (15) into the surplus-sharing rule (16), wage rate follows:

wt = νezt + (1− ν)χ+ νψθt (17)

Equilibrium

The competitive equilibrium for the model economy is a list of sequences:

{ct, nh
t , n

f
t , ut, vt, Rt, q(θt), p(θt), wt, χt

9}∞t=0 for the given parameters {β, δ, ν, ρ, κ} and the exogenous pro-

cess zt, which satisfy the below set of equations (18)−(27):

The household’s optimal consumption-saving decision rule requires:

1 = RtEt
β�u′(ct+1)

�u′(ct) (18)

The firm’s optimal job-creation and vacancy-posting condition implies:10

ψ

q(θt)
= (1− δ)EtΞt+1|t

(
ezt+1 − wt+1 +

ψ

q(θt+1)

)
(19)

where the stochastic discount factor follows Ξt+1|t ≡
βũ′(ct+1)
ũ′(ct)

.

Real wage rate solves the Nash-bargaining problem:

wt = νezt + (1− ν)χ+ νψθt (20)
9As discussed in the previous section, when nonmarket activity χ is specified as a parameter so that its value is time-invariant and

does not respond to labor productivity shocks, it is added to the parameter set instead of the list of sequences.
10This condition is modified for the Pissarides model, which is discussed in more detail in the following section.

7

needs to hold, as well.

Lastly, Vt denotes the asset value of posting a vacancy for a job, which is zero in equilibrium.

The solution to the Nash-bargaining problem yields the following surplus-sharing rule:

(1− ν)(Wt − Ut) = νJt (16)

Plugging Equations (12), (13), and (14) and (15) into the surplus-sharing rule (16), wage rate follows:

wt = νezt + (1− ν)χ+ νψθt (17)

Equilibrium

The competitive equilibrium for the model economy is a list of sequences:

{ct, nh
t , n

f
t , ut, vt, Rt, q(θt), p(θt), wt, χt

9}∞t=0 for the given parameters {β, δ, ν, ρ, κ} and the exogenous pro-

cess zt, which satisfy the below set of equations (18)−(27):

The household’s optimal consumption-saving decision rule requires:

1 = RtEt
β�u′(ct+1)

�u′(ct) (18)

The firm’s optimal job-creation and vacancy-posting condition implies:10

ψ

q(θt)
= (1− δ)EtΞt+1|t

(
ezt+1 − wt+1 +

ψ

q(θt+1)

)
(19)

where the stochastic discount factor follows Ξt+1|t ≡
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The law of motion for labor factor productivity follows: 

Economy-wide aggregate resource constraint holds:

Final output is produced only by the employed workers, and labor productivity is gov-
erned by the specified stochastic process: (11)

Results

Parametrization and Model Specifications

In order to study the business-cycle properties of three competing labor-search 
models in a comparative approach, I perform three set of specifications as discussed, 
which I refer hereafter as the Shimer, Hagedorn and Manovskii and Pissarides models. 
By the Shimer model, I refer to the canonical labor search model a la Shimer (2005), 
by the Hagedorn and Manovskii model I refer to a modified labor-search model with 
relatively higher nonmarket activity and lower bargaining power of workers, and by 
the Pissarides model, I refer to an environment where the cost of posting vacancies is 
not proportional, but a decreasing function of posted vacancies.

(11) 	 Note that this condition is implied by the joint flow budget constraint of the household and the firm. The intuition for this 
resource constraint is that the total production of real goods in this economy is composed of the firm’s production and home 
production, that is,                       out of which the household consumes and the firm covers its real vacancy-posting costs.

(12) 	 Note that when the functional form of the vacancy-posting cost follows Equation (28), the optimal vacancy posting condition 
for the firm needs to be modified as:

β denotes the discount factor, δ denotes the exogenous job separation rate, ξ denotes the exponent of unemployment in the matchin 
function, κ denotes the productivity rate of matching, ν denotes the worker’s bargaining power in Nash bargaining, ψ denotes the cost of 
posting vacancies, ρz denotes the AR(1) coefficient and σz denotes the standard deviation of the total factor productivity shock.

Aggregate employment follows its law of motion:

nt+1 = (1− δ)(nt +m(ut, vt)) (21)

The job matching identity holds:

m(ut, vt) = κuξtv
1−ξ
t = p(θt)ut = q(θt)vt (22)

wherem(·) is a constant-returns-to-scale (CRTS)matching technology function, q(·) is the rate at which vacant

jobs are filled, and p(·) is the rate at which unemployed individuals get employed.

Labor market clears:
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Each member of the household participates in the labor pool, either as employed or unemployed:
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yt = ct + ψvt − utχ (26)

Final output is produced only by the employed workers, and labor productivity is governed by the specified

stochastic process:11

yt = eztnt (27)
11Note that this condition is implied by the joint flow budget constraint of the household and the firm. The intuition for this resource

constraint is that the total production of real goods in this economy is composed of the firm’s production and home production, that
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Table 1
Parameter Values of the Three Models

Shimer 
Model

Hagedorn and 
Manovskii Model Pissarides Model

β 0.99 0.99 0.99

δ 0.10 0.10 0.10

ξ 0.40 0.40 0.40

κ 0.50 0.50 0.50

ν 0.40 0.052 0.40

ψ 0.25 0.25 ψ = 0.6019 × v = 0.25

ρz 0.95 0.95 0.95

σz 0.007 0.007 0.007

β denotes the discount factor, δ denotes the exogenous job separation rate, 
ξ denotes the exponent of unemployment in the matching function, κ denotes 
the productivity rate of matching, ν denotes the worker’s bargaining power in 
Nash bargaining, ψ denotes the cost of posting vacancies, ρz denotes the AR(1) 
coefficient and σz denotes the standard deviation of the total factor productivity 
shock.

Table 2
Steady-States of the Three Models

u z c v p q χ w R θ n y
Shimer 0.0957 0.0000 0.8699 0.2765 0.9450 0.3271 0.3626 0.9065 1.0101 2.8894 0.9043 0.9043

Hagedorn 
and 
Manovskii

0.0950 0.0000 0.9172 0.2781 0.9525 0.3254 0.8607 0.9060 1.0101 2.9274 0.9050 0.9050

Pissarides 0.0923 0.0000 0.8709 0.2850 0.9837 0.3184 0.3731 0.9328 1.0101 3.0891 0.9077 0.9077

u denotes unemployment rate, z denotes total factor productivity (in exponential form), c denotes consumption, v denotes 
vacancy postings, p denotes the rate at which jobs are filled, q denotes the rate at which vacancies are filled, χ denotes 
unemployment benefit/home production determined as a ratio of the wage rate, w denotes the wage rate, R denotes the 
gross rate of return, θ denotes  labor market tightness, n denotes labor and y denotes output.
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I display the baseline parameter values for the three models in Table 1. The parameter 
values in the Shimer and Pissarides models are identical, except for a minor formulation 
difference: while the cost of posting vacancies, ψ, is proportional in the Shimer model, 
I first assume that it takes a decreasing functional form of over posted vacancies in the 
Pissarides model as follows:

Next, while I feed the cost of posting vacancies, ψ, as a constant parameter to the 
former model, I calibrate the steady-state value of costing vacancies, 
                                       in the latter model so that the equilibrium value of cost of post-
ing vacancies of the two models coincide. (13),  (14)

The parameter values of the Hagedorn and Manovskii model differ from the two 
other models in two dimensions: first, following Hagedorn and Manovskii (2008), I set 
the bargaining power parameter of the worker in the Hagedorn and Manovskii model, 
ν, to 0.052, whereas this value is set to 0.40 in the two other models. Second, again fol-
lowing Hagedorn and Manovskii (2008), I  set the nonmarket activity parameter value 
(the ratio of unemployment benefit/home production to steady-state wage rate) in the 
Hagedorn and Manovskii model to χ = 0.95, whereas this value is set to χ = 0.40 in the 
two other models. (15)

Model Results

I display the resultant steady-states of the three competing models in Table 2. I report 
that, as in- tended, steady-state values of the three models are quantitatively similar. 
The only exception to this similarity is due to nonmarket activity: because of the dif-
ferent parametrization of the Hagedorn and Manovskii model, the steady-state value 
of nonmarket activity is noticeably higher in the Hagedorn and Manovskii model than 
those of the two other models. (16)

(13) 	 In doing so, since there is no earlier study that could shed light to this parametrization, I set the exponent of vacancy post-
ing costs to               so that the function displays decreasing returns to scale, and then calibrate the multiplier before v0.7 
to 0.6019, so that its steady-state value is equal to 0.25, as in the Shimer model. I also re- port the consequent findings with 
a more concave function cost function in Table A.9-Table A.11. Results with other concavity parametrization are avail-
able upon request, and the associated MATLAB  codes can be downloaded at http://www.econ.boun.edu.tr/torul/nols.zip.

(14) 	 As in the case of lump-sum transfer of profits, fixed vacancy costs do not alter optimal decision rule of the firm. 
Fixed-costs, by design, imply decreasing average costs, and the most reasonable way of incorporating Pissar-
ides (2009) argument while also enabling the firm to internalize the costs could be the introduction of a decreas-
ing-returns-to-scale cost function, which affects the firm’s optimal decision rule, and thus generates implica-
tions of interest by Pissarides (2009)’s claim. For the firm to alter its decision rules due to fixed-costs, one could 
computationally change the solution algorithm, e.g. rely on a global approximation technique via value or policy function itera-
tion. However, that approach would reduce the comparability of competing models solved via local approximation techniques.

(15) 	 Results of Hagedorn and Manovskii model with χ = 0.40 are displayed in Table A.6, Table A.7 and Table A.8.
 (16) 	 As displayed in Table A.6, Table A.7 and Table A.8, in the presence of high nonmarket activity rates (χ =0.95), when bar-

gaining power of workers increase from 0.052 to 0.40 in Nash bargaining, the Hagedorn and Manovskii model gener-
ates a steady-state, which is radically different than those of the Shimer and the Pissarides models. Further, in this set-
ting, job-matching probability in the Hagedorn and Manovskii model turns out to ill-behave, since the steady- state 
of q reaches a value above 1. Further, this specification yields an unemployment rate u as much as 3.5 times that of the 
Shimer model, and a vacancy posting rate v of only one-fifth of the Shimer model. Accordingly, labor market tightness 
in Hagedorn and Manovskii model with low high bargaining power of workers turns out to be significantly lower than 
that of Shimer or Pissarides models. Therefore, it is safe to conclude that for the Hagedorn and Manovskii model to per-
form comparably to the Shimer and Pissarides models, it is imperative to set the worker’s bargaining power significant-
ly lower, as high values of nonmarket activity already empower workers and thereby reduce opportunity cost of working.

Results
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After computing the deterministic steady-states, I next turn to deriving decision rules 
and law of motions in the neighborhood of the respective steady-states of the three mod-
els in response to labor productivity shocks. For this goal, I utilize the Schmitt-Grohé 
and Uribe first-order linear local approximation algorithm. (17) In doing so, as briefly 
discussed, I follow two different approaches:  i) I formulate nonmarket activity χ as 
a parameter, the unique value of which is as listed in Table 2, or ii) I endogenize the 
value of nonmarket activity so that the ratio of nonmarket activity to wage rate remains 
constant not only at the steady-state, but also throughout business-cycle fluctuations 
resulting from productivity shocks. I coin the former specification as exogenous χ and 
the latter as endogenous χ. (18) For each of the three competing models, I compare and 
contrast the implications of the endogeneity of nonmarket activity, χ. (19)

Since the main focus of interest of labor-search models is addressing discrepancies in 
second moments, I next turn to simulating model economies so as to explore on second 
moments. For this purpose, I simulate 100 model economies with different productivity 
innovations, while keeping innovations the same across models. After generating the 
time-series of economic variables of interest around their respective steady-states for 
100 quarters, I next take the natural logarithm of the computed series, and apply the 
Hodrick and Prescott filter to generate the trend and de-trended series. (20) I display the 
descriptive statistics of the resultant series in Table 3, Table 4 and Table 5.

u denotes unemployment rate, z denotes total factor productivity (in exponential form), c denotes consumption, v denotes vacancy 
postings, p denotes the rate at which jobs are filled, q denotes the rate at which vacancies are filled, χ denotes unemployment benefit/
home production determined as a ratio of the wage rate, w denotes the wage rate, R denotes the gross rate of return, θ denotes  labor 
market tightness, n denotes labor and y denotes output.

Table 2
Steady-States of the Three Models

(17) 	 I append the details of the local approximation algorithm to the Appendix.
(18) 	 For robustness check on decision rules and law of motions, I shut down exogenous innovations to labor productiv-

ity for 99 periods: t = 2, . . . , 100 and feed the three models with an initial productivity innovation of positive 2 standard 
deviations in their respective steady-states at time t = 1. For brevity, I display the convergence patterns of only one state 
variable, ut, and one control variable, vt in Figure A.1, Figure A.2 and Figure A.3. In summary, all variables illustrate a 
sharp and clear convergence pattern to their long run means, with the endogeneity of χ inducing noticable differences.

(19) 	 While I set χ as exogenously for comparability with the earlier literature, my rationale for endogenizing χ is due to report-
ing on the considerable implications of incorporating co-movement of nonmarket activity and wage rate throughout busi-
ness-cycles. As I discuss in detail, this distinction has first-order implications, which is not studied in the earlier literature.

(20)	 While using Hodrick and Prescott filter, I use a smoothing parameter λ equal to 1600, as it is standard in the macroeconomics 
literature. Note that Shimer (2005) sets the smoothing parameter equal to 105, thereby condensing the responses to innovations 
more than the common practice in the literature.

Table 1
Parameter Values of the Three Models

Shimer 
Model

Hagedorn and 
Manovskii Model Pissarides Model

β 0.99 0.99 0.99

δ 0.10 0.10 0.10

ξ 0.40 0.40 0.40

κ 0.50 0.50 0.50

ν 0.40 0.052 0.40

ψ 0.25 0.25 ψ = 0.6019 × v = 0.25

ρz 0.95 0.95 0.95

σz 0.007 0.007 0.007

β denotes the discount factor, δ denotes the exogenous job separation rate, 
ξ denotes the exponent of unemployment in the matching function, κ denotes 
the productivity rate of matching, ν denotes the worker’s bargaining power in 
Nash bargaining, ψ denotes the cost of posting vacancies, ρz denotes the AR(1) 
coefficient and σz denotes the standard deviation of the total factor productivity 
shock.

Table 2
Steady-States of the Three Models

u z c v p q χ w R θ n y
Shimer 0.0957 0.0000 0.8699 0.2765 0.9450 0.3271 0.3626 0.9065 1.0101 2.8894 0.9043 0.9043

Hagedorn 
and 
Manovskii

0.0950 0.0000 0.9172 0.2781 0.9525 0.3254 0.8607 0.9060 1.0101 2.9274 0.9050 0.9050

Pissarides 0.0923 0.0000 0.8709 0.2850 0.9837 0.3184 0.3731 0.9328 1.0101 3.0891 0.9077 0.9077

u denotes unemployment rate, z denotes total factor productivity (in exponential form), c denotes consumption, v denotes 
vacancy postings, p denotes the rate at which jobs are filled, q denotes the rate at which vacancies are filled, χ denotes 
unemployment benefit/home production determined as a ratio of the wage rate, w denotes the wage rate, R denotes the 
gross rate of return, θ denotes  labor market tightness, n denotes labor and y denotes output.
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Table 3
Descriptive Statistics of the Shimer Model

Endogenous χ

u ez c v p q w R θ y

Std. 
Deviation

0.0076 0.0088 0.0080 0.0054 0.0056 0.0042 0.0083 0.0005 0.0458 0.0082

Rel. Std. (ez) 0.8598 1.0000 0.9091 0.6143 0.6347 0.4774 0.9421 0.0587 5.2053 0.9330

Rel. Std. (y) 0.9215 1.0718 0.9743 0.6584 0.6803 0.5117 1.0097 0.0630 5.5789 1.0000

Corr.(ez) 0.1332 1.0000 0.9675 0.1789 0.9889 -0.1682 0.9838 -0.4070 0.7599 0.9833

Corr.(y) -0.0267 0.9833 0.9970 0.3230 0.9941 -0.3239 0.9998 -0.4282 0.6456 1.0000

Autocorr. 0.9738 0.6689 0.6966 0.8572 0.7305 0.9373 0.6923 0.4979 0.8775 0.6890

Exogenous χ

u ez c v p q w R θ y

Std. 
Deviation

0.0119 0.0088 0.0076 0.0085 0.0088 0.0066 0.0079 0.0007 0.0718 0.0084

Rel. Std. (ez) 1.3473 1.0000 0.8619 0.9624 0.9948 0.7480 0.8985 0.0809 8.1659 0.9568

Rel. Std. (y) 1.4081 1.0451 0.9008 1.0059 1.0397 0.7818 0.9391 0.0846 8.5345 1.0000

Corr.(ez) 0.1332 1.0000 0.9648 0.1789 0.9886 -0.1682 0.9831 -0.0783 0.7599 0.9818

Corr.(y) -0.0276 0.9818 0.9968 0.3185 0.9956 -0.3241 0.9998 -0.1326 0.6468 1.0000

Autocorr. 0.9738 0.6689 0.7164 0.8569 0.7304 0.9372 0.6999 0.2239 0.8774 0.7038
CRISIS, INSTITUTIONAL QUALITY AND ECONOMIC GROWTH 3

Table 4
Descriptive Statistics of the Hagedorn and Manovskii Model

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0076 0.0088 0.0082 0.0054 0.0057 0.0042 0.0084 0.0004 0.0469 0.0082

Rel. Std. (ez) 0.8618 1.0000 0.9356 0.6167 0.6512 0.4796 0.9500 0.0496 5.3309 0.9345

Rel. Std. (y) 0.9222 1.0701 1.0011 0.6599 0.6968 0.5132 1.0166 0.0531 5.7044 1.0000

Corr.(ez) 0.1328 1.0000 0.9879 0.1858 0.9936 -0.1718 0.9844 -0.6725 0.7653 0.9836

Corr.(y) -0.0259 0.9836 0.9995 0.3266 0.9950 -0.3256 0.9998 -0.6842 0.6515 1.0000

Autocorrela-
tion

0.9736 0.6689 0.6838 0.8388 0.7107 0.9338 0.6825 0.6956 0.8675 0.6894

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0676 0.0088 0.0051 0.0482 0.0509 0.0374 0.0038 0.0028 0.4388 0.0115

Rel. Std. (ez) 7.6821 1.0000 0.5813 5.4809 5.7832 4.2517 0.4291 0.3145 49.8804 1.3032

Rel. Std. (y) 5.8949 0.7673 0.4460 4.2058 4.4377 3.2626 0.3293 0.2414 38.2757 1.0000

Corr.(ez) 0.1338 1.0000 0.8640 0.1835 0.9757 -0.1698 0.9832 0.3829 0.7585 0.9395

Corr.(y) -0.0332 0.9395 0.9774 0.2635 0.9656 -0.3120 0.9720 0.1007 0.6372 1.0000

Autocorrela-
tion

0.9736 0.6689 0.8139 0.8391 0.7170 0.9337 0.7013 -0.0459 0.8668 0.8008

Table 5
Descriptive Statistics of the Pissarides Model

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0053 0.0088 0.0079 0.0036 0.0038 0.0029 0.0082 0.0004 0.0336 0.0081

Rel. Std. (ez) 0.6003 1.0000 0.8945 0.4113 0.4311 0.3322 0.9288 0.0438 3.8189 0.9202
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Autocorrela-
tion

0.9748 0.6689 0.6824 0.9021 0.8047 0.9520 0.6922 0.8513 0.9152 0.6779

Exogenous χ
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Autocorrela-
tion

0.9748 0.6689 0.6944 0.9034 0.8065 0.9523 0.7017 0.7074 0.9161 0.6878
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Shimer (2005), in his canonical paper, argues that “In the United States, the standard 
deviation of the vacancy-unemployment ratio is almost 20 times as large as the standard 
deviation of average labor productivity, while the search model predicts that the two 
variables should have nearly the same volatility”. The relative volatility of θ to      gen-
erated in my Shimer specifications is neither nearly equal to unity, nor is it close to 20.

When nonmarket activity,       , is specified endogenously, the standard deviation of 
labor market tightness θ equals 521% of the standard deviation of labor productivity,                                                                             	
   . The same ratio increases up to 817% when modelling χ exogenously. A critical 
result generated by the Shimer specification, as well as the other two specifications, is 
that whenever χ is endogenized, i.e. nonmarket activity is time and state-independent, 
the relative volatility of labor market tightness decreases, and formulating nonmarket 
exogenously, as done in the earlier literature, is therefore a critical element in amplify-
ing the volatility of labor market tightness. (21)

In order to quantify the impact of Hodrick and Prescott smoothing parameter on these 
results, I set λ equal to 105 as in Shimer (2005), and report my findings in Table A.4 and 
Table A.5: as expected, increasing the smoothing parameter generates a lower relative 
labor market tightness volatility, yield- ing values closer to those by Shimer (2005). In 
this setting, increasing the smoothing parameter from the conventional λ = 1600 to λ 
= 105 reduces the volatility of labor market tightness by as much as one fourth: from 
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approximation algorithm. (17) In doing so, as briefly discussed, I follow two different approaches:  i) 
I formulate nonmarket activity χ as a parameter, the unique value of which is as listed in Table 2, 
or ii) I endogenize the value of nonmarket activity so that the ratio of nonmarket activity to wage 
rate remains constant not only at the steady-state, but also throughout business-cycle fluctuations 
resulting from productivity shocks. I coin the former specification as exogenous χ and the latter as 
endogenous χ. (18) For each of the three competing models, I compare and contrast the implications 
of the endogeneity of nonmarket activity, χ. (19) 

Since the main focus of interest of labor-search models is addressing discrepancies in second 
moments, I next turn to simulating model economies so as to explore on second moments. For this 
purpose, I simulate 100 model economies with different productivity innovations, while keeping 
innovations the same across models. After generating the time-series of economic variables of 
interest around their respective steady-states for 100 quarters, I next take the natural logarithm of 
the computed series, and apply the Hodrick and Prescott filter to generate the trend and de-trended 
series. (20) I display the descriptive statistics of the resultant series in Table 3, Table 4 and Table 5. 
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  (17) I append the details of the local approximation algorithm to the Appendix. 
(18) For robustness check on decision rules and law of motions, I shut down exogenous innovations to labor productivity 
for 99 periods: t = 2, . . . , 100 and feed the three models with an initial productivity innovation of positive 2 standard 
deviations in their respective steady-states at time t = 1. For brevity, I display the convergence patterns of only one state 
variable, ut, and one control variable, vt in Figure A.1, Figure A.2 and Figure A.3. In summary, all variables illustrate a 
sharp and clear convergence pattern to their long run means, with the endogeneity of χ inducing noticable differences. 

   (19) While I set χ as exogenously for comparability with the earlier literature, my rationale for endogenizing χ is due to 
reporting on the considerable implications of incorporating co-movement of nonmarket activity and wage rate throughout 
business-cycles. As I discuss in detail, this distinction has first-order implications, which is not studied in the earlier 
literature. 

    (20) While using Hodrick and Prescott filter, I use a smoothing parameter λ equal to 1600, as it is standard in the 
macroeconomics literature. Note that Shimer (2005) sets the smoothing parameter equal to 105, thereby condensing the 
responses to innovations more than the common practice in the literature. 
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(21)	 Note that the negative correlation between unemployment and vacancies, as displayed in Table A.1, Table A.2 and Table A.3 verify 
that the all three models generate downward-sloping Beveridge curves, with comparable figures to those reported by Shimer (2005).

Table 5
Descriptive Statistics of the Pissarides Model
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Table 4
Descriptive Statistics of the Hagedorn and Manovskii Model

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0076 0.0088 0.0082 0.0054 0.0057 0.0042 0.0084 0.0004 0.0469 0.0082

Rel. Std. (ez) 0.8618 1.0000 0.9356 0.6167 0.6512 0.4796 0.9500 0.0496 5.3309 0.9345

Rel. Std. (y) 0.9222 1.0701 1.0011 0.6599 0.6968 0.5132 1.0166 0.0531 5.7044 1.0000

Corr.(ez) 0.1328 1.0000 0.9879 0.1858 0.9936 -0.1718 0.9844 -0.6725 0.7653 0.9836

Corr.(y) -0.0259 0.9836 0.9995 0.3266 0.9950 -0.3256 0.9998 -0.6842 0.6515 1.0000

Autocorrela-
tion

0.9736 0.6689 0.6838 0.8388 0.7107 0.9338 0.6825 0.6956 0.8675 0.6894

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0676 0.0088 0.0051 0.0482 0.0509 0.0374 0.0038 0.0028 0.4388 0.0115

Rel. Std. (ez) 7.6821 1.0000 0.5813 5.4809 5.7832 4.2517 0.4291 0.3145 49.8804 1.3032

Rel. Std. (y) 5.8949 0.7673 0.4460 4.2058 4.4377 3.2626 0.3293 0.2414 38.2757 1.0000

Corr.(ez) 0.1338 1.0000 0.8640 0.1835 0.9757 -0.1698 0.9832 0.3829 0.7585 0.9395

Corr.(y) -0.0332 0.9395 0.9774 0.2635 0.9656 -0.3120 0.9720 0.1007 0.6372 1.0000

Autocorrela-
tion

0.9736 0.6689 0.8139 0.8391 0.7170 0.9337 0.7013 -0.0459 0.8668 0.8008

Table 5
Descriptive Statistics of the Pissarides Model

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0053 0.0088 0.0079 0.0036 0.0038 0.0029 0.0082 0.0004 0.0336 0.0081

Rel. Std. (ez) 0.6003 1.0000 0.8945 0.4113 0.4311 0.3322 0.9288 0.0438 3.8189 0.9202

Rel. Std. (y) 0.6524 1.0867 0.9721 0.4470 0.4685 0.3610 1.0093 0.0476 4.1501 1.0000

Corr.(ez) 0.1375 1.0000 0.9692 0.1659 0.9626 -0.1260 0.9913 -0.7888 0.7116 0.9851

Corr.(y) -0.0147 0.9851 0.9967 0.3113 0.9579 -0.2775 0.9984 -0.7835 0.5997 1.0000

Autocorrela-
tion

0.9748 0.6689 0.6824 0.9021 0.8047 0.9520 0.6922 0.8513 0.9152 0.6779

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0083 0.0088 0.0074 0.0057 0.0060 0.0046 0.0078 0.0004 0.0530 0.0082

Rel. Std. (ez) 0.9480 1.0000 0.8390 0.6491 0.6793 0.5245 0.8846 0.0452 6.0290 0.9345

Rel. Std. (y) 1.0145 1.0701 0.8979 0.6947 0.7269 0.5613 0.9466 0.0483 6.4519 1.0000

Corr.(ez) 0.1376 1.0000 0.9680 0.1649 0.9611 -0.1249 0.9903 -0.5034 0.7100 0.9844

Corr.(y) -0.0151 0.9844 0.9966 0.3088 0.9608 -0.2775 0.9984 -0.5205 0.6007 1.0000

Autocorrela-
tion

0.9748 0.6689 0.6944 0.9034 0.8065 0.9523 0.7017 0.7074 0.9161 0.6878
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521% to 398% for the endogenous χ case, and from 817% to 624% for the exogenous χ 
case. Overall, it is possible to argue that the choice of Hodrick and Prescott smoothing 
parameter has sizable implications in favor of the Shimer puzzle. (22)

Table 4 verifies the claim by Hagedorn and Manovskii (2008) that the Hagedorn and 
Manovskii model with exogenous nonmarket activity does an excellent job in amplify-
ing the relative standard deviation of labor market tightness with its value of 4988%, 
which is over six times that of the Shimer model. (23) However, this result does not hold 
true when nonmarket activity χ is endogenized: in the case of endogenous χ, the relative 
volatility prediction of the Hagedorn and Manovskii on labor market tightness is just 
533%, which is only moderately over that of the Shimer specification with 521%. These 
findings suggest that the success of the Hagedorn and Manovskii (2008) in amplifying 
the relative volatility of interest, and thereby addressing the Shimer puzzle depends 
considerably on the formulation of nonmarket activity: if the value of nonmarket ac-
tivity (i.e. unemployment bene- fits/home production) is allowed to co-move with the 
wage rate in response to technology shocks, the suggested solution by Hagedorn and 
Manovskii (2008) to the Shimer puzzle fails to deliver. In other words, Hagedorn and 
Manovskii (2008)’s strength lies decisively on the assumption of constant non- market 
activity, thus further research addressing whether nonmarket activity is indeed empiri-
cally irresponsive to productivity innovations is key.(24)

I report my findings on the second moments of variables of interest in the Pissarides 
model in Table 5. Evidently, the descriptive statistics by the Pissarides specification 
compare rather poorly to the Shimer and the Hagedorn and Manovskii specifications: 
the volatility ratio of labor market tightness productivity shocks is lower than that of 
the Shimer and Hagedorn and Manovskii specifications for both the endogenous and 
the exogenous nonmarket activity settings. When the concavity parameter ι is reduced 
to 0.30 so that the vacancy posting function decreases more to scales, relative volatility 
ratio improves, yet still falls short of delivering relative volatility figures close to those 
of the Shimer specifications.(25) Therefore, in the absence of ad-hoc wage stickiness, 
the Pissarides model with decreasing average cost of posting vacancies, as formulated 
in Equation (29) does not offer promising outcomes, and further research extending 
Pissarides (2009) could focus on the re- formulation the posting cost function, while 
simultaneously incorporating other vital elements, such as wage stickiness. (26)

(22)	 For a more elaborate discussion on this issue, see Shimer (2010). 
(23)	 In fact, it overamplifies by twofolds, as the relevant figure in the data is approximately 2000%.
(24)	 Note throughout this exercise, I assume that the worker’s bargaining power is 5%, which is almost an or-

der of magnitude lower than that of the competing two models with ν = 0.40. In the Hagedorn and Manovs-
kii model, when the worker’s bargaining power is set to the same ν = 0.40, the model starts to display ill-be-
having results, with the probability of filling a vacancy exceeding unity, and unemployment rate reaching over 
one-third of the population, as displayed in Table A.6. Therefore, for the Hagedorn and Manovskii model to generate a de-
cent performance, high nonmarket activity is to be coupled with unreasonably low bargaining power of workers, as well.

(25)	 In this experiment, I re-calibrate the coefficient before cost of vacancies, i.e. 0.6019, to 0.3600, so that                                                               holds 
thereby ensuring comparability of the two specifications. See Table A.9, Table A.10 and Table A.11 for the details of the findings 
by this re-parametrization.

(26)	 For further concerns on Pissarides (2009), see Silva and Toledo (2013).
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Conclusions 

In this paper, I explore on the business-cycle performances of three prominent labor-search models: 
Shimer (2005), Hagedorn and Manovskii (2008) and Pissarides (2009). I first provide a standard 
framework for contrasting the three models, and quantify the sensitivity of Shimer (2005)’s relative 
labor market tightness volatility to business cycle smoothing parametrization. Second, I revisit 
Hagedorn and Manovskii (2008)’s proposed solution to the Shimer puzzle, and report that the 
strength of the model by Hagedorn and Manovskii (2008) depends considerably on whether value 
of nonmarket activity responds to business-cycle fluctuations or not. Third, I report that when 
specified in the form of a decreasing-returns-to-scale functional form, the incorporation of 
decreasing average vacancy posting costs by Pissarides (2009) cannot generate decent business-
cycle volatilities in the absence of further wage stickiness. All my findings reveal the way nonmarket 
activity is modelled has key implications for business-cycle performances of labor-search models. 
Specifically, formulating the value of nonmarket activity as a constant, or allowing it to respond to 
business-cycle fluctuations has first-order consequences, especially in settings where bargaining 
power of workers is low and the ratio of nonmarket activity to wage rate is high. Therefore, these 
findings point to the need for exploring further on the degree of co-movement between wage rate and 
nonmarket activity in order to improve on labor-search modelling attempts, which I leave to future 
research. 
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Conclusions

In this paper, I explore on the business-cycle performances of three prominent labor-
search models: Shimer (2005), Hagedorn and Manovskii (2008) and Pissarides (2009). 
I first provide a standard framework for contrasting the three models, and quantify 
the sensitivity of Shimer (2005)’s relative labor market tightness volatility to business 
cycle smoothing parametrization. Second, I revisit Hagedorn and Manovskii (2008)’s 
proposed solution to the Shimer puzzle, and report that the strength of the model by 
Hagedorn and Manovskii (2008) depends considerably on whether value of nonmarket 
activity responds to business-cycle fluctuations or not. Third, I report that when speci-
fied in the form of a decreasing-returns-to-scale functional form, the incorporation of 
decreasing average vacancy posting costs by Pissarides (2009) cannot generate decent 
business-cycle volatilities in the absence of further wage stickiness. All my findings 
reveal the way nonmarket activity is modelled has key implications for business-cycle 
performances of labor-search models. Specifically, formulating the value of nonmarket 
activity as a constant, or allowing it to respond to business-cycle fluctuations has first-
order consequences, especially in settings where bargaining power of workers is low 
and the ratio of nonmarket activity to wage rate is high. Therefore, these findings point 
to the need for exploring further on the degree of co-movement between wage rate and 
nonmarket activity in order to improve on labor-search modelling attempts, which I 
leave to future research.
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Correlation Matrix in the Pissarides Model 
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 u v θ p q 
u 1.0000 -0.8981 0.7097 0.0453 0.9409 
v -0.8981 1.0000 -0.4631 0.2387 -0.9719 
θ 0.7097 -0.4631 1.0000 0.7045 0.4665 
p 0.0453 0.2387 0.7045 1.0000 -0.2520 
q 0.9409 -0.9719 0.4665 -0.2520 1.0000 
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 u v θ p q 
u 1.0000 -0.8899 0.7071 0.0579 0.9396 
v -0.8899 1.0000 -0.4467 0.2395 -0.9694 
θ 0.7071 -0.4467 1.0000 0.7166 0.4601 
p 0.0579 0.2395 0.7166 1.0000 -0.2431 
q 0.9396 -0.9694 0.4601 -0.2431 1.0000 

 

 u v θ p q 
u 1.0000 -0.8867 0.7014 0.0344 0.9395 
v -0.8867 1.0000 -0.4378 0.2659 -0.9646 
θ 0.7014 -0.4378 1.0000 0.6913 0.4568 
p 0.0344 0.2659 0.6913 1.0000 -0.2612 
q 0.9395 -0.9646 0.4568 -0.2612 1.0000 

 

 u v θ p q 
u 1.0000 -0.9183 0.7408 0.1212 0.9528 
v -0.9183 1.0000 -0.5267 0.1385 -0.9782 
θ 0.7408 -0.5267 1.0000 0.7286 0.5337 
p 0.1212 0.1385 0.7286 1.0000 -0.1437 
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Table A.4
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Endogenous χ
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Exogenous χ
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Descriptive Statistics of the Shimer Model with λ = 105

Correlation Matrix in the Shimer Model with λ = 105

 † λ = 10 5 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).

 † λ = 10 5 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).
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Table A.4
Descriptive Statistics of the Shimer Model with λ = 105

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0050 0.0131 0.0121 0.0041 0.0086 0.0032 0.0126 0.0007 0.0522 0.0124

Rel. Std. (ez) 0.3808 1.0000 0.9209 0.3138 0.6548 0.2477 0.9582 0.0546 3.9790 0.9481

Rel. Std. (y) 0.4017 1.0548 0.9713 0.3310 0.6907 0.2612 1.0107 0.0576 4.1969 1.0000

Corr.(ez) 0.0136 1.0000 0.9925 0.4644 0.9955 -0.5258 0.9961 -0.6716 0.9134 0.9960

Corr.(y) -0.0593 0.9960 0.9993 0.5164 0.9979 -0.5875 0.9999 -0.6911 0.8817 1.0000

Autocorr. 0.9596 0.8264 0.8426 0.7710 0.8629 0.9087 0.8417 0.7092 0.8985 0.8398

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0078 0.0131 0.0115 0.0064 0.0134 0.0051 0.0120 0.0009 0.0818 0.0128

Rel. Std. (ez) 0.5966 1.0000 0.8795 0.4918 1.0258 0.3880 0.9165 0.0653 6.2411 0.9776

Rel. Std. (y) 0.6103 1.0229 0.8996 0.5031 1.0493 0.3969 0.9375 0.0668 6.3842 1.0000

Corr.(ez) 0.0137 1.0000 0.9912 0.4642 0.9954 -0.5259 0.9957 -0.3957 0.9134 0.9953

Corr.(y) -0.0606 0.9953 0.9992 0.5110 0.9987 -0.5877 0.9999 -0.4376 0.8826 1.0000

Autocorr. 0.9595 0.8264 0.8536 0.7708 0.8627 0.9086 0.8460 0.4394 0.8984 0.8480

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).
                      

Table A.5
Correlation Matrix in the Shimer Model with λ = 105

Endogenous χ

u v θ p q

u 1.0000 -0.7712 0.3611 -0.0306 0.8073

v -0.7712 1.0000 0.1020 0.4738 -0.9491

θ 0.3611 0.1020 1.0000 0.8995 -0.1816

p -0.0306 0.4738 0.8995 1.0000 -0.5596

q 0.8073 -0.9491 -0.1816 -0.5596 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.7711 0.3609 -0.0310 0.8072

v -0.7711 1.0000 0.1020 0.4742 -0.9490

θ 0.3609 0.1020 1.0000 0.8992 -0.1818

p -0.0310 0.4742 0.8992 1.0000 -0.5601

q 0.8072 -0.9490 -0.1818 -0.5601 1.0000

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).

CRISIS, INSTITUTIONAL QUALITY AND ECONOMIC GROWTH 5

Table A.4
Descriptive Statistics of the Shimer Model with λ = 105

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0050 0.0131 0.0121 0.0041 0.0086 0.0032 0.0126 0.0007 0.0522 0.0124

Rel. Std. (ez) 0.3808 1.0000 0.9209 0.3138 0.6548 0.2477 0.9582 0.0546 3.9790 0.9481

Rel. Std. (y) 0.4017 1.0548 0.9713 0.3310 0.6907 0.2612 1.0107 0.0576 4.1969 1.0000

Corr.(ez) 0.0136 1.0000 0.9925 0.4644 0.9955 -0.5258 0.9961 -0.6716 0.9134 0.9960

Corr.(y) -0.0593 0.9960 0.9993 0.5164 0.9979 -0.5875 0.9999 -0.6911 0.8817 1.0000

Autocorr. 0.9596 0.8264 0.8426 0.7710 0.8629 0.9087 0.8417 0.7092 0.8985 0.8398

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0078 0.0131 0.0115 0.0064 0.0134 0.0051 0.0120 0.0009 0.0818 0.0128

Rel. Std. (ez) 0.5966 1.0000 0.8795 0.4918 1.0258 0.3880 0.9165 0.0653 6.2411 0.9776

Rel. Std. (y) 0.6103 1.0229 0.8996 0.5031 1.0493 0.3969 0.9375 0.0668 6.3842 1.0000

Corr.(ez) 0.0137 1.0000 0.9912 0.4642 0.9954 -0.5259 0.9957 -0.3957 0.9134 0.9953

Corr.(y) -0.0606 0.9953 0.9992 0.5110 0.9987 -0.5877 0.9999 -0.4376 0.8826 1.0000

Autocorr. 0.9595 0.8264 0.8536 0.7708 0.8627 0.9086 0.8460 0.4394 0.8984 0.8480

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).
                      

Table A.5
Correlation Matrix in the Shimer Model with λ = 105

Endogenous χ

u v θ p q

u 1.0000 -0.7712 0.3611 -0.0306 0.8073

v -0.7712 1.0000 0.1020 0.4738 -0.9491

θ 0.3611 0.1020 1.0000 0.8995 -0.1816

p -0.0306 0.4738 0.8995 1.0000 -0.5596

q 0.8073 -0.9491 -0.1816 -0.5596 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.7711 0.3609 -0.0310 0.8072

v -0.7711 1.0000 0.1020 0.4742 -0.9490

θ 0.3609 0.1020 1.0000 0.8992 -0.1818

p -0.0310 0.4742 0.8992 1.0000 -0.5601

q 0.8072 -0.9490 -0.1818 -0.5601 1.0000

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).

CRISIS, INSTITUTIONAL QUALITY AND ECONOMIC GROWTH 5

Table A.4
Descriptive Statistics of the Shimer Model with λ = 105

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0050 0.0131 0.0121 0.0041 0.0086 0.0032 0.0126 0.0007 0.0522 0.0124

Rel. Std. (ez) 0.3808 1.0000 0.9209 0.3138 0.6548 0.2477 0.9582 0.0546 3.9790 0.9481

Rel. Std. (y) 0.4017 1.0548 0.9713 0.3310 0.6907 0.2612 1.0107 0.0576 4.1969 1.0000

Corr.(ez) 0.0136 1.0000 0.9925 0.4644 0.9955 -0.5258 0.9961 -0.6716 0.9134 0.9960

Corr.(y) -0.0593 0.9960 0.9993 0.5164 0.9979 -0.5875 0.9999 -0.6911 0.8817 1.0000

Autocorr. 0.9596 0.8264 0.8426 0.7710 0.8629 0.9087 0.8417 0.7092 0.8985 0.8398

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0078 0.0131 0.0115 0.0064 0.0134 0.0051 0.0120 0.0009 0.0818 0.0128

Rel. Std. (ez) 0.5966 1.0000 0.8795 0.4918 1.0258 0.3880 0.9165 0.0653 6.2411 0.9776

Rel. Std. (y) 0.6103 1.0229 0.8996 0.5031 1.0493 0.3969 0.9375 0.0668 6.3842 1.0000

Corr.(ez) 0.0137 1.0000 0.9912 0.4642 0.9954 -0.5259 0.9957 -0.3957 0.9134 0.9953

Corr.(y) -0.0606 0.9953 0.9992 0.5110 0.9987 -0.5877 0.9999 -0.4376 0.8826 1.0000

Autocorr. 0.9595 0.8264 0.8536 0.7708 0.8627 0.9086 0.8460 0.4394 0.8984 0.8480

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).
                      

Table A.5
Correlation Matrix in the Shimer Model with λ = 105

Endogenous χ

u v θ p q

u 1.0000 -0.7712 0.3611 -0.0306 0.8073

v -0.7712 1.0000 0.1020 0.4738 -0.9491

θ 0.3611 0.1020 1.0000 0.8995 -0.1816

p -0.0306 0.4738 0.8995 1.0000 -0.5596

q 0.8073 -0.9491 -0.1816 -0.5596 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.7711 0.3609 -0.0310 0.8072

v -0.7711 1.0000 0.1020 0.4742 -0.9490

θ 0.3609 0.1020 1.0000 0.8992 -0.1818

p -0.0310 0.4742 0.8992 1.0000 -0.5601

q 0.8072 -0.9490 -0.1818 -0.5601 1.0000

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).

CRISIS, INSTITUTIONAL QUALITY AND ECONOMIC GROWTH 5

Table A.4
Descriptive Statistics of the Shimer Model with λ = 105

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0050 0.0131 0.0121 0.0041 0.0086 0.0032 0.0126 0.0007 0.0522 0.0124

Rel. Std. (ez) 0.3808 1.0000 0.9209 0.3138 0.6548 0.2477 0.9582 0.0546 3.9790 0.9481

Rel. Std. (y) 0.4017 1.0548 0.9713 0.3310 0.6907 0.2612 1.0107 0.0576 4.1969 1.0000

Corr.(ez) 0.0136 1.0000 0.9925 0.4644 0.9955 -0.5258 0.9961 -0.6716 0.9134 0.9960

Corr.(y) -0.0593 0.9960 0.9993 0.5164 0.9979 -0.5875 0.9999 -0.6911 0.8817 1.0000

Autocorr. 0.9596 0.8264 0.8426 0.7710 0.8629 0.9087 0.8417 0.7092 0.8985 0.8398

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0078 0.0131 0.0115 0.0064 0.0134 0.0051 0.0120 0.0009 0.0818 0.0128

Rel. Std. (ez) 0.5966 1.0000 0.8795 0.4918 1.0258 0.3880 0.9165 0.0653 6.2411 0.9776

Rel. Std. (y) 0.6103 1.0229 0.8996 0.5031 1.0493 0.3969 0.9375 0.0668 6.3842 1.0000

Corr.(ez) 0.0137 1.0000 0.9912 0.4642 0.9954 -0.5259 0.9957 -0.3957 0.9134 0.9953

Corr.(y) -0.0606 0.9953 0.9992 0.5110 0.9987 -0.5877 0.9999 -0.4376 0.8826 1.0000

Autocorr. 0.9595 0.8264 0.8536 0.7708 0.8627 0.9086 0.8460 0.4394 0.8984 0.8480

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).
                      

Table A.5
Correlation Matrix in the Shimer Model with λ = 105

Endogenous χ

u v θ p q

u 1.0000 -0.7712 0.3611 -0.0306 0.8073

v -0.7712 1.0000 0.1020 0.4738 -0.9491

θ 0.3611 0.1020 1.0000 0.8995 -0.1816

p -0.0306 0.4738 0.8995 1.0000 -0.5596

q 0.8073 -0.9491 -0.1816 -0.5596 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.7711 0.3609 -0.0310 0.8072

v -0.7711 1.0000 0.1020 0.4742 -0.9490

θ 0.3609 0.1020 1.0000 0.8992 -0.1818

p -0.0310 0.4742 0.8992 1.0000 -0.5601

q 0.8072 -0.9490 -0.1818 -0.5601 1.0000

† λ = 105 refers to the Hodrick and Prescott filter smoothing parameter in Shimer (2005).



66� BOGAZICI JOURNAL

Table A.6

Table A.7

Table A.8

Steady-State of the Hagedorn and Manovskii Model with ν = 0.40

Descriptive Statistics of the Hagedorn and Manovskii Model with ν = 0.40

Correlation Matrix in the Hagedorn and Manovskii Model with ν = 0.40
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Table A.6
Steady-State of the Hagedorn and Manovskii Model with ν = 0.40

u z c v p q χ w R θ n y

0.3664 0.0000 0.9556 0.0624 0.1729 1.0148 0.9214 0.9699 1.0101 0.1704 0.6336 0.6336

† ν = 0.40 refers to the worker’s bargaining power in Nash bargaining.

Table A.7
Descriptive Statistics of the Hagedorn and Manovskii Model with ν = 0.40

Endogenous χ

u ez c v p q w R θ y

Std. 
Deviation

0.0043 0.0088 0.0084 0.0120 0.0095 0.0052 0.0086 0.0004 0.0158 0.0081

Rel. Std. (ez) 0.4884 1.0000 0.9525 1.3589 1.0751 0.5898 0.9810 0.0457 1.7975 0.9156

Rel. Std. (y) 0.5335 1.0922 1.0403 1.4842 1.1742 0.6442 1.0715 0.0499 1.9632 1.0000

Corr.(ez) 0.0227 1.0000 0.9967 -0.1331 -0.0266 -0.9995 0.9983 -0.9961 -0.0294 0.6491

Corr.(y) -0.6957 0.6491 0.7035 0.6041 0.7017 -0.6319 0.6854 -0.6340 0.6997 1.0000

Autocorr. 0.9654 0.6689 0.6677 0.9724 0.9649 0.6756 0.6646 0.7025 0.9652 0.8113

Exogenous χ

u ez c v p q w R θ y

Std. 
Deviation

0.0526 0.0088 0.0041 0.1551 0.1197 0.0617 0.0060 0.0005 0.2000 0.0249

Rel. Std. (ez) 5.9768 1.0000 0.4658 17.6326 13.6115 7.0149 0.6863 0.0594 22.7403 2.8356

Rel. Std. (y) 2.1078 0.3527 0.1643 6.2183 4.8003 2.4739 0.2420 0.0210 8.0197 1.0000
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Table A.6
Steady-State of the Hagedorn and Manovskii Model with ν = 0.40

u z c v p q χ w R θ n y

0.3664 0.0000 0.9556 0.0624 0.1729 1.0148 0.9214 0.9699 1.0101 0.1704 0.6336 0.6336

† ν = 0.40 refers to the worker’s bargaining power in Nash bargaining.

Table A.7
Descriptive Statistics of the Hagedorn and Manovskii Model with ν = 0.40

Endogenous χ

u ez c v p q w R θ y

Std. 
Deviation
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u ez c v p q w R θ y

Std. 
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Table A.8
Correlation Matrix in the Hagedorn and Manovskii Model with ν = 0.40

Endogenous χ

u v θ p q

u 1.0000 -0.8496 -0.9183 -0.9183 -0.0423

v -0.8496 1.0000 0.9790 0.9787 0.1556

θ -0.9183 0.9790 1.0000 1.0000 0.0526

p -0.9183 0.9787 1.0000 1.0000 0.0498

q -0.0423 0.1556 0.0526 0.0498 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.8400 -0.9077 -0.9086 -0.0049

v -0.8400 1.0000 0.9783 0.9782 0.1279

θ -0.9077 0.9783 1.0000 0.9991 0.0227

p -0.9086 0.9782 0.9991 1.0000 0.0240

q -0.0049 0.1279 0.0227 0.0240 1.0000

† ν = 0.40 refers to the worker’s bargaining power in 
Nash bargaining.
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Table A.9
Steady-State of the Pissarides Model with ι = 0.30

u z c v p q χ w R θ n y

0.0880 0.0000 0.8720 0.2967 1.0370 0.3074 0.3881 0.9702 1.0101 3.3729 0.9120 0.9120

† ι = 0.30 refers to the exponent of cost of posting vacancies.

Table A.10
Correlation Matrix in the Pissarides Model with ι = 0.30

Endogenous χ

u v θ p q

u 1.0000 -0.8990 0.7403 0.1993 0.9535

v -0.8990 1.0000 -0.4909 0.0976 -0.9709

θ 0.7403 -0.4909 1.0000 0.7837 0.5345

p 0.1993 0.0976 0.7837 1.0000 -0.0632

q 0.9535 -0.9709 0.5345 -0.0632 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.8998 0.7409 0.1993 0.9538

v -0.8998 1.0000 -0.4928 0.0964 -0.9712

θ 0.7409 -0.4928 1.0000 0.7830 0.5358

p 0.1993 0.0964 0.7830 1.0000 -0.0624

q 0.9538 -0.9712 0.5358 -0.0624 1.0000

† ι = 0.30 refers to the exponent of cost of posting vacancies.

8 BOGAZICI JOURNAL

Table A.9
Steady-State of the Pissarides Model with ι = 0.30

u z c v p q χ w R θ n y

0.0880 0.0000 0.8720 0.2967 1.0370 0.3074 0.3881 0.9702 1.0101 3.3729 0.9120 0.9120

† ι = 0.30 refers to the exponent of cost of posting vacancies.

Table A.10
Correlation Matrix in the Pissarides Model with ι = 0.30

Endogenous χ

u v θ p q

u 1.0000 -0.8990 0.7403 0.1993 0.9535

v -0.8990 1.0000 -0.4909 0.0976 -0.9709

θ 0.7403 -0.4909 1.0000 0.7837 0.5345

p 0.1993 0.0976 0.7837 1.0000 -0.0632

q 0.9535 -0.9709 0.5345 -0.0632 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.8998 0.7409 0.1993 0.9538

v -0.8998 1.0000 -0.4928 0.0964 -0.9712

θ 0.7409 -0.4928 1.0000 0.7830 0.5358

p 0.1993 0.0964 0.7830 1.0000 -0.0624

q 0.9538 -0.9712 0.5358 -0.0624 1.0000

† ι = 0.30 refers to the exponent of cost of posting vacancies.

8 BOGAZICI JOURNAL

Table A.9
Steady-State of the Pissarides Model with ι = 0.30

u z c v p q χ w R θ n y

0.0880 0.0000 0.8720 0.2967 1.0370 0.3074 0.3881 0.9702 1.0101 3.3729 0.9120 0.9120

† ι = 0.30 refers to the exponent of cost of posting vacancies.

Table A.10
Correlation Matrix in the Pissarides Model with ι = 0.30

Endogenous χ

u v θ p q

u 1.0000 -0.8990 0.7403 0.1993 0.9535

v -0.8990 1.0000 -0.4909 0.0976 -0.9709

θ 0.7403 -0.4909 1.0000 0.7837 0.5345

p 0.1993 0.0976 0.7837 1.0000 -0.0632

q 0.9535 -0.9709 0.5345 -0.0632 1.0000

Exogenous χ

u v θ p q

u 1.0000 -0.8998 0.7409 0.1993 0.9538

v -0.8998 1.0000 -0.4928 0.0964 -0.9712

θ 0.7409 -0.4928 1.0000 0.7830 0.5358

p 0.1993 0.0964 0.7830 1.0000 -0.0624

q 0.9538 -0.9712 0.5358 -0.0624 1.0000

† ι = 0.30 refers to the exponent of cost of posting vacancies.
CRISIS, INSTITUTIONAL QUALITY AND ECONOMIC GROWTH 9

Table A.11
Descriptive Statistics of the Pissarides Model with ι = 0.3

Endogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0059 0.0088 0.0080 0.0040 0.0047 0.0033 0.0084 0.0004 0.0424 0.0082

Rel. Std. (ez) 0.6752 1.0000 0.9044 0.4538 0.5355 0.3763 0.9587 0.0492 4.8151 0.9285

Rel. Std. (y) 0.7273 1.0770 0.9740 0.4888 0.5767 0.4053 1.0326 0.0530 5.1859 1.0000

Corr.(ez) 0.1384 1.0000 0.9695 0.1978 0.9781 -0.1267 0.9972 -0.6367 0.7252 0.9865

Corr.(y) -0.0064 0.9865 0.9962 0.3317 0.9599 -0.2702 0.9937 -0.6415 0.6190 1.0000

Autocorrela-
tion

0.9744 0.6689 0.6872 0.8671 0.7825 0.9489 0.6964 0.7180 0.9029 0.6806

Exogenous χ

u ez c v p q w R θ y

Std. Deviation 0.0097 0.0088 0.0075 0.0065 0.0077 0.0054 0.0082 0.0005 0.0690 0.0083

Rel. Std. (ez) 1.1008 1.0000 0.8520 0.7391 0.8710 0.6133 0.9362 0.0597 7.8491 0.9466

Rel. Std. (y) 1.1629 1.0565 0.9001 0.7809 0.9202 0.6480 0.9890 0.0631 8.2922 1.0000

Corr.(ez) 0.1385 1.0000 0.9678 0.1970 0.9770 -0.1258 0.9962 -0.2797 0.7238 0.9856

Corr.(y) -0.0067 0.9856 0.9960 0.3281 0.9622 -0.2699 0.9937 -0.3123 0.6199 1.0000

Autocorrela-
tion

0.9744 0.6689 0.7032 0.8690 0.7847 0.9493 0.7063 0.4291 0.9039 0.6927

† ι = 0.30 refers to the exponent of cost of posting vacancies.
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B	 Appendix: Solution Algorithm

In this appendix section, I describe the details of the linear approximation algorithm 
around steady-state. First, I compute the deterministic steady states of the three models 
by solving the simultaneous system of model equations via the fsolve command in 
MATLAB, as it is standard in the literature. Next, I turn to exploring the business cycle 
properties variables of interest via Schmitt- Grohé and Uribe (2004) first-order linear 
approximation algorithm around steady-states. Let ζt be the stacked vector of co-state 
variables, i.e.  [ut;  zt] and κt  be the stacked vector of state variables, i.e. [ct; vt; pt; qt; 
χt; wt; Rt; Ξt] if χ is endogenized and [ct; vt; pt; qt; wt; Rt; Ξt] if χ is kept as a parameter. 
Then, the first-order linear approximations of the decision rules imply:

where σ refers to perturbation from the steady-state, hence 
		                Equation (30) describes how the control variables rely on state 
variables, and Equation (31) illustrates how the state variables evolve. Next, I rewrite 
the equilibrium conditions in a compact way so that expected value of each function 
as of time t equals 0, and we stack these equations in a vector of functions Γt. Then, by 
chain rule, simple algebra yields:

where Γι refers to the Jacobian of Γ(.) with respect to ι. The analytical forms of the 
Jacobians could be derived with tedious algebra since functional forms are already 
known, and having solved the deterministic steady-state, evaluating the Jacobians at 
steady-state values for equation is feasible, which are used to derive ϱκ and ℏκ matrices, 
i.e. decision rules.
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